結果
| 問題 |
No.848 なかよし旅行
|
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2021-03-15 19:57:06 |
| 言語 | C (gcc 13.3.0) |
| 結果 |
TLE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 6,123 bytes |
| コンパイル時間 | 510 ms |
| コンパイル使用メモリ | 33,280 KB |
| 実行使用メモリ | 16,128 KB |
| 最終ジャッジ日時 | 2024-11-07 09:57:43 |
| 合計ジャッジ時間 | 7,362 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 4 |
| other | TLE * 1 -- * 25 |
ソースコード
#include<stdio.h>
#include<stdlib.h>
#include<stdint.h>
#include<inttypes.h>
typedef struct binary_heap {
void *array;
size_t heap_size;
size_t max_size;
size_t val_size;
int (*cmp) (const void *, const void *);
} heap;
heap* new_binary_heap (const size_t val_size, int (*cmp_func) (const void *, const void *)) {
heap *h = (heap *) calloc (1, sizeof (heap));
h->array = malloc (val_size * (1 + 1));
h->heap_size = 0;
h->max_size = 1;
h->val_size = val_size;
h->cmp = cmp_func;
return h;
}
int is_empty (const heap *h) {
return h->heap_size == 0;
}
static inline void heap_func_swap (void * restrict a, void * restrict b, size_t val_size) {
if ((val_size & 7) == 0) {
uint64_t *p = (uint64_t *) a;
uint64_t *q = (uint64_t *) b;
val_size /= sizeof (uint64_t);
while (val_size--) {
const uint64_t tmp = *p;
*p++ = *q;
*q++ = tmp;
}
} else {
uint8_t *p = (uint8_t *) a;
uint8_t *q = (uint8_t *) b;
while (val_size--) {
const uint8_t tmp = *p;
*p++ = *q;
*q++ = tmp;
}
}
}
static inline void heap_func_copy (void * restrict dst, const void * restrict src, size_t val_size) {
if ((val_size & 7) == 0) {
const uint64_t *p = (const uint64_t *) src;
uint64_t *q = (uint64_t *) dst;
val_size /= sizeof (uint64_t);
while (val_size--) {
*q++ = *p++;
}
} else {
const uint8_t *p = (const uint8_t *) src;
uint8_t *q = (uint8_t *) dst;
while (val_size--) {
*q++ = *p++;
}
}
}
void push (heap * const h, const void *val) {
if (h->heap_size == h->max_size) {
h->max_size = 2 * h->max_size + 1;
h->array = realloc (h->array, h->val_size * (h->max_size + 1));
}
h->heap_size++;
uint8_t * const array = (uint8_t *) h->array;
size_t k = h->heap_size;
const size_t val_size = h->val_size;
int (* const cmp) (const void *, const void *) = h->cmp;
heap_func_copy(array + k * val_size, val, val_size);
while (k > 1) {
size_t parent = k / 2;
if (cmp (array + parent * val_size, array + k * val_size) <= 0) {
return;
}
heap_func_swap (array + parent * val_size, array + k * val_size, val_size);
k = parent;
}
}
void pop (heap * const h, void *res) {
uint8_t * const array = (uint8_t *) h->array;
const size_t val_size = h->val_size;
if (res != NULL) {
heap_func_copy (res, array + val_size, val_size);
}
heap_func_copy (array + val_size, array + val_size * h->heap_size, val_size);
h->heap_size--;
int (* const cmp) (const void *, const void *) = h->cmp;
const size_t n = h->heap_size;
size_t k = 1;
while (2 * k + 1 <= n) {
const int c = cmp (array + val_size * 2 * k, array + val_size * (2 * k + 1));
const size_t next = 2 * k + (c <= 0 ? 0 : 1);
if (cmp (array + val_size * k, array + val_size * next) <= 0) return;
heap_func_swap (array + val_size * k, array + val_size * next, val_size);
k = next;
}
if (2 * k <= n && cmp (array + val_size * k, array + val_size * 2 * k) > 0) {
heap_func_swap (array + val_size * k, array + val_size * 2 * k, val_size);
}
}
typedef int32_t i32;
typedef int64_t i64;
typedef int32_t edge_weight;
typedef struct directed_edge {
int32_t vertex;
int32_t next;
edge_weight cost;
} graph_edge;
typedef struct directedGraph {
graph_edge *edge;
int32_t *start;
int32_t pointer;
int32_t vertex_num;
int32_t edge_max_size;
} graph;
graph* new_graph (const int vertex_num) {
graph *g = (graph *) calloc (1, sizeof (graph));
g->edge = (graph_edge *) calloc (1, sizeof (graph_edge));
g->start = (int32_t *) calloc (vertex_num, sizeof (int32_t));
g->pointer = 0;
g->vertex_num = vertex_num;
g->edge_max_size = 1;
for (int32_t i = 0; i < vertex_num; ++i) {
g->start[i] = -1;
}
return g;
}
void add_edge (graph *g, int32_t from, int32_t to, edge_weight cost) {
if (g->pointer == g->edge_max_size) {
g->edge_max_size *= 2;
g->edge = (graph_edge *) realloc (g->edge, sizeof (graph_edge) * g->edge_max_size);
}
g->edge[g->pointer] = (graph_edge) {to, g->start[from], cost};
g->start[from] = g->pointer++;
}
#define MAX(a,b) ((a)>(b)?(a):(b))
#define MIN(a,b) ((a)<(b)?(a):(b))
#define ABS(a) ((a)>(0)?(a):-(a))
#define ALLOC(size,type) ((type*)calloc((size),sizeof(type)))
#define SORT(a,num,cmp) qsort((a),(num),sizeof(*(a)),cmp)
typedef struct node {
i32 v;
i64 d;
} node;
int cmp_node (const void *a, const void *b) {
i64 d = ((node *)a)->d - ((node *)b)->d;
return d == 0 ? 0 : d < 0 ? -1 : 1;
}
i64* dijkstra (graph *g, i32 src) {
i32 n = g->vertex_num;
i64 *dp = ALLOC (n, i64);
const i64 inf = (i64) 2000 * 1000000000;
for (i32 i = 0; i < n; ++i) {
dp[i] = inf;
}
dp[src] = 0;
static heap *h = NULL;
if (h == NULL) {
h = new_binary_heap (sizeof (node), cmp_node);
}
push (h, &(node){src, 0});
while (!is_empty (h)) {
node t;
pop (h, &t);
for (i32 p = g->start[t.v]; p != -1; p = g->edge[p].next) {
i32 u = g->edge[p].vertex;
i64 d = t.d + g->edge[p].cost;
if (d >= dp[u]) continue;
dp[u] = d;
push (h, &(node){u, d});
}
}
return dp;
}
void run (void) {
i32 n, m, p, q, t;
scanf ("%" SCNi32 "%" SCNi32 "%" SCNi32 "%" SCNi32 "%" SCNi32, &n, &m, &p, &q, &t);
p--; q--;
graph *g = new_graph (n);
while (m--) {
i32 a, b, c;
scanf ("%" SCNi32 "%" SCNi32 "%" SCNi32, &a, &b, &c);
a--; b--;
add_edge (g, a, b, c);
add_edge (g, b, a, c);
}
i64 *dp_0 = dijkstra (g, 0);
i64 *dp_p = dijkstra (g, p);
i64 *dp_q = dijkstra (g, q);
if (2 * dp_0[p] > t || 2 * dp_0[q] > t) {
puts ("-1");
return;
}
if (dp_0[p] + dp_p[q] + dp_q[0] <= t) {
printf ("%" PRIi32 "\n", t);
return;
}
i64 max = 0;
for (i32 i = 0; i < n; ++i) {
for (i32 j = 0; j < n; ++j) {
i64 x = dp_0[i] + dp_p[i] + dp_p[j] + dp_0[j];
i64 y = dp_0[i] + dp_q[i] + dp_q[j] + dp_0[j];
if (x <= t && y <= t) {
max = MAX (max, dp_0[i] + dp_0[j] + t - MAX(x, y));
}
}
}
printf ("%" PRIi64 "\n", max);
}
int main (void) {
run();
return 0;
}
akakimidori