結果
問題 |
No.186 中華風 (Easy)
|
ユーザー |
![]() |
提出日時 | 2021-03-15 23:07:38 |
言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 1,126 bytes |
コンパイル時間 | 1,688 ms |
コンパイル使用メモリ | 161,652 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-07 12:00:28 |
合計ジャッジ時間 | 2,542 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 23 |
ソースコード
//yuki186.cpp //Mon Mar 15 22:59:39 2021 #include <bits/stdc++.h> #define INTINF 2147483647 #define LLINF 9223372036854775807 #define MOD 1000000007 #define rep(i,n) for (int i=0;i<(n);++i) using namespace std; using ll=long long; typedef pair<int,int> P; inline ll mod(ll a, ll m){ return (a%m+m)%m; } ll extGCD(ll a, ll b, ll &p, ll &q){ if (b == 0){ p = 1; q = 0; return a; } ll d = extGCD(b, a%b, q, p); q -= a/b*p; return d; } //中国剰余定理。 //リターンは(r,m)。x ≡ r (mod m) //解なしの時は(0,-1)が帰ってくる。 pair<ll,ll> ChineseRem(ll b1, ll m1, ll b2, ll m2){ ll p,q; ll d = extGCD(m1,m2,p,q); if ((b2-b1)%d!=0) return make_pair(0,-1); ll m = m1*(m2/d); ll tmp = (b2-b1)/d*p%(m2/d); ll r = mod(b1+m1*tmp,m); return make_pair(r,m); } int main(){ vector<ll> bs(3),ms(3); rep(i,3) cin >> bs[i] >> ms[i]; ll ansb = 0, ansm = 1; rep(i,3){ pair<ll,ll> tmp = ChineseRem(ansb,ansm,bs[i],ms[i]); ansb = tmp.first; ansm = tmp.second; if (ansm==-1)break; } if (ansm==-1)cout << -1 << endl; else if (ansb==0) cout << ansm << endl; else cout << ansb << endl; }