結果

問題 No.1302 Random Tree Score
ユーザー zkouzkou
提出日時 2021-03-17 19:16:02
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 642 ms / 3,000 ms
コード長 8,357 bytes
コンパイル時間 762 ms
コンパイル使用メモリ 82,304 KB
実行使用メモリ 127,772 KB
最終ジャッジ日時 2024-11-15 13:14:07
合計ジャッジ時間 7,636 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 58 ms
68,352 KB
testcase_01 AC 57 ms
68,224 KB
testcase_02 AC 240 ms
87,988 KB
testcase_03 AC 368 ms
100,944 KB
testcase_04 AC 235 ms
87,548 KB
testcase_05 AC 639 ms
127,196 KB
testcase_06 AC 639 ms
127,252 KB
testcase_07 AC 237 ms
87,904 KB
testcase_08 AC 368 ms
101,840 KB
testcase_09 AC 639 ms
127,748 KB
testcase_10 AC 634 ms
124,724 KB
testcase_11 AC 234 ms
87,080 KB
testcase_12 AC 636 ms
126,332 KB
testcase_13 AC 58 ms
68,352 KB
testcase_14 AC 640 ms
127,772 KB
testcase_15 AC 642 ms
127,772 KB
testcase_16 AC 58 ms
68,352 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

# For the sake of speed,
# this convolution is specialized to mod 998244353.


_fft_mod = 998244353
_fft_sum_e = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601,
              842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899, 0, 0, 0, 0, 0, 0, 0, 0)
_fft_sum_ie = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543,
               109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235, 0, 0, 0, 0, 0, 0, 0, 0)


def _butterfly(a):
    n = len(a)
    h = (n - 1).bit_length()
    for ph in range(1, h + 1):
        w = 1 << (ph - 1)
        p = 1 << (h - ph)
        now = 1
        for s in range(w):
            offset = s << (h - ph + 1)
            for i in range(p):
                l = a[i + offset]
                r = a[i + offset + p] * now % _fft_mod
                a[i + offset] = (l + r) % _fft_mod
                a[i + offset + p] = (l - r) % _fft_mod
            now *= _fft_sum_e[(~s & -~s).bit_length() - 1]
            now %= _fft_mod


def _butterfly_inv(a):
    n = len(a)
    h = (n - 1).bit_length()
    for ph in range(h, 0, -1):
        w = 1 << (ph - 1)
        p = 1 << (h - ph)
        inow = 1
        for s in range(w):
            offset = s << (h - ph + 1)
            for i in range(p):
                l = a[i + offset]
                r = a[i + offset + p]
                a[i + offset] = (l + r) % _fft_mod
                a[i + offset + p] = (l - r) * inow % _fft_mod
            inow *= _fft_sum_ie[(~s & -~s).bit_length() - 1]
            inow %= _fft_mod


def _convolution_naive(a, b):
    n = len(a)
    m = len(b)
    ans = [0] * (n + m - 1)
    if n < m:
        for j in range(m):
            for i in range(n):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
    else:
        for i in range(n):
            for j in range(m):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
    return ans


def _convolution_fft(a, b):
    a = a.copy()
    b = b.copy()
    n = len(a)
    m = len(b)
    z = 1 << (n + m - 2).bit_length()
    a += [0] * (z - n)
    _butterfly(a)
    b += [0] * (z - m)
    _butterfly(b)
    for i in range(z):
        a[i] = a[i] * b[i] % _fft_mod
    _butterfly_inv(a)
    a = a[:n + m - 1]
    iz = pow(z, _fft_mod - 2, _fft_mod)
    for i in range(n + m - 1):
        a[i] = a[i] * iz % _fft_mod
    return a


def _convolution_square(a):
    a = a.copy()
    n = len(a)
    z = 1 << (2 * n - 2).bit_length()
    a += [0] * (z - n)
    _butterfly(a)
    for i in range(z):
        a[i] = a[i] * a[i] % _fft_mod
    _butterfly_inv(a)
    a = a[:2 * n - 1]
    iz = pow(z, _fft_mod - 2, _fft_mod)
    for i in range(2 * n - 1):
        a[i] = a[i] * iz % _fft_mod
    return a


def convolution(a, b):
    """It calculates (+, x) convolution in mod 998244353. 
    Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1], 
    it calculates the array c of length n + m - 1, defined by

    >   c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353.

    It returns an empty list if at least one of a and b are empty.

    Complexity
    ----------

    >   O(n log n), where n = len(a) + len(b).
    """
    n = len(a)
    m = len(b)
    if n == 0 or m == 0:
        return []
    if min(n, m) <= 100:
        return _convolution_naive(a, b)
    if a is b:
        return _convolution_square(a)
    return _convolution_fft(a, b)


# Reference: https://opt-cp.com/fps-fast-algorithms/
def inv(a):
    """It calculates the inverse of formal power series in O(n log n) time, where n = len(a).
    """
    n = len(a)
    assert n > 0 and a[0] != 0
    res = [pow(a[0], _fft_mod - 2, _fft_mod)]
    m = 1
    while m < n:
        f = a[:min(n, 2 * m)]
        g = res.copy()
        f += [0] * (2 * m - len(f))
        _butterfly(f)
        g += [0] * (2 * m - len(g))
        _butterfly(g)
        for i in range(2 * m):
            f[i] = f[i] * g[i] % _fft_mod
        _butterfly_inv(f)
        f = f[m:] + [0] * m
        _butterfly(f)
        for i in range(2 * m):
            f[i] = f[i] * g[i] % _fft_mod
        _butterfly_inv(f)
        f = f[:m]
        iz = pow(2 * m, _fft_mod - 2, _fft_mod)
        iz *= -iz
        iz %= _fft_mod
        for i in range(m):
            f[i] = f[i] * iz % _fft_mod
        res.extend(f)
        m *= 2
    res = res[:n]
    return res

    
def integ_inplace(a):
    n = len(a)
    assert n > 0
    if n == 1:
        return []
    a.pop()
    a.insert(0, 0)
    inv = [1, 1]
    for i in range(2, n):
        inv.append(-inv[_fft_mod%i] * (_fft_mod//i) % _fft_mod)
        a[i] = a[i] * inv[i] % _fft_mod


def deriv_inplace(a):
    n = len(a)
    assert n > 0
    for i in range(2, n):
        a[i] = a[i] * i % _fft_mod
    a.pop(0)
    a.append(0)


def log(a):
    a = a.copy()
    n = len(a)
    assert n > 0 and a[0] == 1
    a_inv = inv(a)
    deriv_inplace(a)
    a = convolution(a, a_inv)[:n]
    integ_inplace(a)
    return a
    

def exp(a):
    a = a.copy()
    n = len(a)
    assert n > 0 and a[0] == 0
    g = [1]
    a[0] = 1
    h_drv = a.copy()
    deriv_inplace(h_drv)
    m = 1
    while m < n:
        f_fft = a[:m] + [0] * m
        _butterfly(f_fft)

        if m > 1:
            _f = [f_fft[i] * g_fft[i] % _fft_mod for i in range(m)]
            _butterfly_inv(_f)
            _f = _f[m // 2:] + [0] * (m // 2)
            _butterfly(_f)
            for i in range(m):
                _f[i] = _f[i] * g_fft[i] % _fft_mod
            _butterfly_inv(_f)
            _f = _f[:m//2]
            iz = pow(m, _fft_mod - 2, _fft_mod)
            iz *= -iz
            iz %= _fft_mod
            for i in range(m//2):
                _f[i] = _f[i] * iz % _fft_mod
            g.extend(_f)

        t = a[:m]
        deriv_inplace(t)
        r = h_drv[:m - 1]
        r.append(0)
        _butterfly(r)
        for i in range(m):
            r[i] = r[i] * f_fft[i] % _fft_mod
        _butterfly_inv(r)
        im = pow(-m, _fft_mod - 2, _fft_mod)
        for i in range(m):
            r[i] = r[i] * im % _fft_mod
        for i in range(m):
            t[i] = (t[i] + r[i]) % _fft_mod
        t = [t[-1]] + t[:-1]

        t += [0] * m
        _butterfly(t)
        g_fft = g + [0] * (2 * m - len(g))
        _butterfly(g_fft)
        for i in range(2 * m):
            t[i] = t[i] * g_fft[i] % _fft_mod
        _butterfly_inv(t)
        t = t[:m]
        i2m = pow(2 * m, _fft_mod - 2, _fft_mod)
        for i in range(m):
            t[i] = t[i] * i2m % _fft_mod
    
        v = a[m:min(n, 2 * m)]
        v += [0] * (m - len(v))
        t = [0] * (m - 1) + t + [0]
        integ_inplace(t)
        for i in range(m):
            v[i] = (v[i] - t[m + i]) % _fft_mod

        v += [0] * m
        _butterfly(v)
        for i in range(2 * m):
            v[i] = v[i] * f_fft[i] % _fft_mod
        _butterfly_inv(v)
        v = v[:m]
        i2m = pow(2 * m, _fft_mod - 2, _fft_mod)
        for i in range(m):
            v[i] = v[i] * i2m % _fft_mod
        
        for i in range(min(n - m, m)):
            a[m + i] = v[i]
        
        m *= 2
    return a


def pow_fps(a, k):
    a = a.copy()
    n = len(a)
    l = 0
    while l < len(a) and not a[l]:
        l += 1
    if l * k >= n:
        return [0] * n
    ic = pow(a[l], _fft_mod - 2, _fft_mod)
    pc = pow(a[l], k, _fft_mod)
    a = log([a[i] * ic % _fft_mod for i in range(l, len(a))])
    for i in range(len(a)):
        a[i] = a[i] * k % _fft_mod
    a = exp(a)
    for i in range(len(a)):
        a[i] = a[i] * pc % _fft_mod
    a = [0] * (l * k) + a[:n - l * k]
    return a
    

MOD = 998244353
table_len = 10 ** 5 + 10

def main():
    import sys
    input = sys.stdin.buffer.readline

    fac = [1, 1]
    for i in range(2, table_len):
        fac.append(fac[-1] * i % MOD)

    finv = [0] * table_len
    finv[-1] = pow(fac[-1], MOD - 2, MOD)
    for i in range(table_len-1, 0, -1):
        finv[i - 1] = finv[i] * i % MOD
        
    N = int(input())
    f = [(i + 1) * finv[i] % MOD for i in range(N - 1)]
    ans = pow_fps(f, N)
    print(ans[N - 2] * fac[N - 2] % MOD * pow(N, MOD - N + 1, MOD) % MOD)


main()
0