結果

問題 No.848 なかよし旅行
ユーザー hamrayhamray
提出日時 2021-03-19 00:51:16
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 5,233 bytes
コンパイル時間 1,905 ms
コンパイル使用メモリ 180,400 KB
実行使用メモリ 72,220 KB
最終ジャッジ日時 2024-11-17 07:13:56
合計ジャッジ時間 33,729 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 TLE -
testcase_01 AC 11 ms
40,192 KB
testcase_02 AC 10 ms
72,220 KB
testcase_03 AC 12 ms
40,192 KB
testcase_04 AC 11 ms
34,936 KB
testcase_05 AC 10 ms
34,944 KB
testcase_06 AC 11 ms
34,944 KB
testcase_07 AC 12 ms
34,944 KB
testcase_08 AC 27 ms
34,948 KB
testcase_09 AC 36 ms
35,156 KB
testcase_10 AC 28 ms
35,028 KB
testcase_11 AC 1,412 ms
36,060 KB
testcase_12 TLE -
testcase_13 TLE -
testcase_14 AC 1,179 ms
35,456 KB
testcase_15 TLE -
testcase_16 TLE -
testcase_17 TLE -
testcase_18 AC 1,317 ms
35,968 KB
testcase_19 AC 1,334 ms
35,712 KB
testcase_20 AC 59 ms
35,064 KB
testcase_21 TLE -
testcase_22 AC 292 ms
36,992 KB
testcase_23 AC 211 ms
35,156 KB
testcase_24 AC 11 ms
34,940 KB
testcase_25 TLE -
testcase_26 AC 13 ms
34,944 KB
testcase_27 AC 11 ms
35,072 KB
testcase_28 AC 11 ms
34,980 KB
testcase_29 AC 11 ms
72,168 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
//#include <atcoder/all>
//using namespace atcoder;
#pragma GCC target ("avx")
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")

using namespace std;

typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<string> VS;
typedef pair<int, int> PII;
typedef pair<int, int> pii;
typedef pair<long long, long long> PLL;
typedef pair<int, PII> TIII;

typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;


#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)
#define REP(i, n) FOR(i, 0, n)
#define rep(i, a, b) for (int i = a; i < (b); ++i)
#define trav(a, x) for (auto &a : x)
#define all(x) x.begin(), x.end()

#define MOD 1000000007

template<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}
template<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}
const double EPS = 1e-6, PI = acos(-1);
const double pi = 3.141592653589793238462643383279;
//ここから編集    
typedef string::const_iterator State;
ll GCD(ll a, ll b){
  return (b==0)?a:GCD(b, a%b);
}
ll LCM(ll a, ll b){
  return a/GCD(a, b) * b;
}
template< int mod >
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }

  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }

  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

  bool operator==(const ModInt &p) const { return x == p.x; }

  bool operator!=(const ModInt &p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }

  static int get_mod() { return mod; }
};

using modint = ModInt< 1000000007 >;
template< typename T >
struct Combination {
  vector< T > _fact, _rfact, _inv;

  Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {
    _fact[0] = _rfact[sz] = _inv[0] = 1;
    for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;
    _rfact[sz] /= _fact[sz];
    for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);
    for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];
  }

  inline T fact(int k) const { return _fact[k]; }

  inline T rfact(int k) const { return _rfact[k]; }

  inline T inv(int k) const { return _inv[k]; }

  T P(int n, int r) const {
    if(r < 0 || n < r) return 0;
    return fact(n) * rfact(n - r);
  }

  T C(int p, int q) const {
    if(q < 0 || p < q) return 0;
    return fact(p) * rfact(q) * rfact(p - q);
  }

  T H(int n, int r) const {
    if(n < 0 || r < 0) return (0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};

int modpow(ll x, ll n, int mod) {
  if(x == 0) return 0;
  
  ll res = 1;
  while(n) {
    if(n&1) res = res*x % mod;
    x = x*x%mod;
    n >>= 1;
  }
  return res;
}

ll dist[2010][2010];
vector<vector<pair<int, int>>> g(2010);
int main() {
  cin.tie(0);
  ios::sync_with_stdio(false);
  cout << fixed << setprecision(7);
  
  ll N, M, P, Q, T; cin >> N >> M >> P >> Q >> T;
  P--; Q--;
  REP(i,M) {
    int a, b, c; cin >> a >> b >> c;
    a--; b--;
    g[a].push_back({b, c});
    g[b].push_back({a, c});
  }
  REP(i,2010) REP(j,2010) dist[i][j] = INT_MAX;
  REP(i,N) {
    priority_queue<pair<ll,ll>, vector<pair<ll,ll>>, greater<pair<ll,ll>>> q;
    dist[i][i] = 0;
    q.push({0,i});
    while(q.size()) {
      auto p = q.top();
      q.pop();
      int v = p.second;
      if(dist[i][v] < p.first) continue;

      for(auto e: g[v]) {
        int u = e.first;
        int cost = e.second;
        if(dist[i][u] > dist[i][v] + cost) {
          dist[i][u] = dist[i][v] + cost;
          q.push({dist[i][u], u});
        }
      }
    }
  }

  ll ans = -1;
  for(int i=0; i<N; i++) {
    for(int j=0; j<N; j++) {
      if(dist[0][i] + dist[0][j] + max(dist[i][P] + dist[j][P], dist[i][Q]+dist[j][Q]) <= T) {
        ans = max(ans, dist[0][j] + dist[0][i] + T-(dist[0][i] + dist[0][j] + max(dist[i][P] + dist[j][P], dist[i][Q]+dist[j][Q])));
      }

      if(dist[0][P] + dist[P][Q] + dist[Q][0] <= T) ans = max(ans, T);
    }
  }
  cout << ans << endl;
  return 0;
}
0