結果

問題 No.1434 Make Maze
ユーザー くれちーくれちー
提出日時 2021-03-19 23:57:36
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 30 ms / 2,000 ms
コード長 10,928 bytes
コンパイル時間 28,578 ms
コンパイル使用メモリ 382,804 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-24 21:47:19
合計ジャッジ時間 20,592 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #

// The main code is at the very bottom.

#[allow(unused_imports)]
use {
  lib::byte::ByteChar,
  std::cell::{Cell, RefCell},
  std::cmp::{
    self,
    Ordering::{self, *},
    Reverse,
  },
  std::collections::*,
  std::convert::identity,
  std::fmt::{self, Debug, Display, Formatter},
  std::io::prelude::*,
  std::iter::{self, FromIterator},
  std::marker::PhantomData,
  std::mem,
  std::num::Wrapping,
  std::ops::{Range, RangeFrom, RangeInclusive, RangeTo, RangeToInclusive},
  std::process,
  std::rc::Rc,
  std::thread,
  std::time::{Duration, Instant},
  std::{char, f32, f64, i128, i16, i32, i64, i8, isize, str, u128, u16, u32, u64, u8, usize},
};

#[allow(unused_imports)]
#[macro_use]
pub mod lib {
  pub mod byte {
    pub use self::byte_char::*;

    mod byte_char {
      use std::error::Error;
      use std::fmt::{self, Debug, Display, Formatter};
      use std::str::FromStr;

      #[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
      #[repr(transparent)]
      pub struct ByteChar(pub u8);

      impl Debug for ByteChar {
        fn fmt(&self, f: &mut Formatter) -> fmt::Result {
          write!(f, "b'{}'", self.0 as char)
        }
      }

      impl Display for ByteChar {
        fn fmt(&self, f: &mut Formatter) -> fmt::Result {
          write!(f, "{}", self.0 as char)
        }
      }

      impl FromStr for ByteChar {
        type Err = ParseByteCharError;

        fn from_str(s: &str) -> Result<ByteChar, ParseByteCharError> {
          match s.as_bytes().len() {
            1 => Ok(ByteChar(s.as_bytes()[0])),
            0 => Err(ParseByteCharErrorKind::EmptyStr.into()),
            _ => Err(ParseByteCharErrorKind::TooManyBytes.into()),
          }
        }
      }

      #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
      pub struct ParseByteCharError {
        kind: ParseByteCharErrorKind,
      }

      impl Display for ParseByteCharError {
        fn fmt(&self, f: &mut Formatter) -> fmt::Result {
          f.write_str(match self.kind {
            ParseByteCharErrorKind::EmptyStr => "empty string",
            ParseByteCharErrorKind::TooManyBytes => "too many bytes",
          })
        }
      }

      impl Error for ParseByteCharError {}

      #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
      enum ParseByteCharErrorKind {
        EmptyStr,
        TooManyBytes,
      }

      impl From<ParseByteCharErrorKind> for ParseByteCharError {
        fn from(kind: ParseByteCharErrorKind) -> ParseByteCharError {
          ParseByteCharError { kind }
        }
      }
    }
  }

  pub mod io {
    pub use self::scanner::*;

    mod scanner {
      use std::io::{self, BufRead};
      use std::iter;
      use std::str::FromStr;

      #[derive(Debug)]
      pub struct Scanner<R> {
        reader: R,
        buf: String,
        pos: usize,
      }

      impl<R: BufRead> Scanner<R> {
        pub fn new(reader: R) -> Self {
          Scanner {
            reader,
            buf: String::new(),
            pos: 0,
          }
        }

        pub fn next(&mut self) -> io::Result<&str> {
          let start = loop {
            match self.rest().find(|c| c != ' ') {
              Some(i) => break i,
              None => self.fill_buf()?,
            }
          };
          self.pos += start;
          let len = self.rest().find(' ').unwrap_or(self.rest().len());
          let s = &self.buf[self.pos..][..len]; // self.rest()[..len]
          self.pos += len;
          Ok(s)
        }

        pub fn parse_next<T>(&mut self) -> io::Result<Result<T, T::Err>>
        where
          T: FromStr,
        {
          Ok(self.next()?.parse())
        }

        pub fn parse_next_n<T>(&mut self, n: usize) -> io::Result<Result<Vec<T>, T::Err>>
        where
          T: FromStr,
        {
          iter::repeat_with(|| self.parse_next()).take(n).collect()
        }

        pub fn map_next_bytes<T, F>(&mut self, mut f: F) -> io::Result<Vec<T>>
        where
          F: FnMut(u8) -> T,
        {
          Ok(self.next()?.bytes().map(&mut f).collect())
        }

        pub fn map_next_bytes_n<T, F>(&mut self, n: usize, mut f: F) -> io::Result<Vec<Vec<T>>>
        where
          F: FnMut(u8) -> T,
        {
          iter::repeat_with(|| self.map_next_bytes(&mut f))
            .take(n)
            .collect()
        }

        fn rest(&self) -> &str {
          &self.buf[self.pos..]
        }

        fn fill_buf(&mut self) -> io::Result<()> {
          self.buf.clear();
          self.pos = 0;
          let read = self.reader.read_line(&mut self.buf)?;
          if read == 0 {
            return Err(io::ErrorKind::UnexpectedEof.into());
          }
          if *self.buf.as_bytes().last().unwrap() == b'\n' {
            self.buf.pop();
          }
          Ok(())
        }
      }
    }
  }
}

#[allow(unused_macros)]
macro_rules! eprint {
  ($($arg:tt)*) => {
    if cfg!(debug_assertions) {
      std::eprint!($($arg)*)
    }
  };
}
#[allow(unused_macros)]
macro_rules! eprintln {
  ($($arg:tt)*) => {
    if cfg!(debug_assertions) {
      std::eprintln!($($arg)*)
    }
  };
}
#[allow(unused_macros)]
macro_rules! dbg {
  ($($arg:tt)*) => {
    if cfg!(debug_assertions) {
      std::dbg!($($arg)*)
    } else {
      ($($arg)*)
    }
  };
}

const CUSTOM_STACK_SIZE_MIB: Option<usize> = Some(1024);
const INTERACTIVE: bool = false;

fn main() -> std::io::Result<()> {
  match CUSTOM_STACK_SIZE_MIB {
    Some(stack_size_mib) => std::thread::Builder::new()
      .name("run_solver".to_owned())
      .stack_size(stack_size_mib * 1024 * 1024)
      .spawn(run_solver)?
      .join()
      .unwrap(),
    None => run_solver(),
  }
}

fn run_solver() -> std::io::Result<()> {
  let stdin = std::io::stdin();
  let reader = stdin.lock();
  let stdout = std::io::stdout();
  let writer = stdout.lock();
  macro_rules! with_wrapper {
    ($($wrapper:expr)?) => {{
      let mut writer = $($wrapper)?(writer);
      solve(reader, &mut writer)?;
      writer.flush()
    }};
  }
  if cfg!(debug_assertions) || INTERACTIVE {
    with_wrapper!()
  } else {
    with_wrapper!(std::io::BufWriter::new)
  }
}

fn solve<R, W>(reader: R, mut writer: W) -> std::io::Result<()>
where
  R: BufRead,
  W: Write,
{
  let mut _scanner = lib::io::Scanner::new(reader);
  #[allow(unused_macros)]
  macro_rules! scan {
    ($T:ty) => {
      _scanner.parse_next::<$T>()?.unwrap()
    };
    ($($T:ty),+) => {
      ($(scan!($T)),+)
    };
    ($T:ty; $n:expr) => {
      _scanner.parse_next_n::<$T>($n)?.unwrap()
    };
    ($($T:ty),+; $n:expr) => {
      iter::repeat_with(|| -> std::io::Result<_> { Ok(($(scan!($T)),+)) })
        .take($n)
        .collect::<std::io::Result<Vec<_>>>()?
    };
  }
  #[allow(unused_macros)]
  macro_rules! scan_bytes_map {
    ($f:expr) => {
      _scanner.map_next_bytes($f)?
    };
    ($f:expr; $n:expr) => {
      _scanner.map_next_bytes_n($n, $f)?
    };
  }
  #[allow(unused_macros)]
  macro_rules! print {
    ($($arg:tt)*) => {
      write!(writer, $($arg)*)?
    };
  }
  #[allow(unused_macros)]
  macro_rules! println {
    ($($arg:tt)*) => {
      writeln!(writer, $($arg)*)?
    };
  }
  #[allow(unused_macros)]
  macro_rules! answer {
    ($($arg:tt)*) => {{
      println!($($arg)*);
      return Ok(());
    }};
  }
  {
    let (h, w, x) = scan!(usize, usize, usize);

    if x % 2 != 0 || x < (w - 1) + (h - 1) {
      answer!("-1");
    }

    if (h, w) == (3, 3) {
      if x != 4 {
        answer!("-1");
      }
      answer!("...\n##.\n...");
    }

    let rev = w == 3;
    let (w, h) = if rev { (h, w) } else { (w, h) };

    let h2 = h / 2 + 1;
    let w2 = w / 2 + 1;
    let x2 = x / 2 + 1;

    let mut p0 = (0..w)
      .step_by(4)
      .take_while(|&c| c + 4 < w)
      .map(|c| (0, c))
      .collect::<Vec<_>>();
    p0.reverse();

    let s = p0[0].1 + 2;

    let mut p1 = if w2 % 2 != 0 {
      vec![]
    } else {
      (0..h)
        .rev()
        .step_by(4)
        .take_while(|&r| r >= 4)
        .map(|r| (s, r - 2))
        .collect()
    };

    let mut ans = vec![vec![false; w]; h];
    for r in 0..h {
      for c in 0..w {
        if r == 0 || c == w - 1 || r % 2 == 0 && c % 2 == 0 {
          ans[r][c] = true;
        }
      }
    }
    if w2 % 2 == 0 && h2 % 2 == 0 {
      ans[2][w - 4] = true;
    }

    let mut cur = h2 + w2 - 1;
    loop {
      if let Some((r, c)) = p0.pop() {
        ans[r + 1][c] = true;
        ans[r + 1][c + 2] = true;
        if cur < x2 {
          ans[r + 2][c + 1] = true;
          ans[r][c + 1] = false;
        }
        if r + 2 != h - 1 {
          p0.push((r + 2, c));
        }
      } else if let Some((c, r)) = p1.pop() {
        ans[r][c + 1] = true;
        ans[r + 2][c + 1] = true;
        if cur < x2 {
          ans[r + 1][c + 2] = true;
          ans[r + 1][c] = false;
        }
        if c + 4 != w - 1 {
          p1.push((c + 2, r));
        }
      } else {
        break;
      }
      if cur < x2 {
        cur += 2;
      }
    }
    if cur != x2 {
      answer!("-1");
    }

    if !rev {
      for r in 0..h {
        for c in 0..w {
          print!("{}", ByteChar(if ans[r][c] { b'.' } else { b'#' }));
        }
        println!();
      }
    } else {
      for c in 0..w {
        for r in 0..h {
          print!("{}", ByteChar(if ans[r][c] { b'.' } else { b'#' }));
        }
        println!();
      }
    }

    // check
    // {
    //   for r in 0..h {
    //     for c in 0..w {
    //       if r % 2 != 0 && c % 2 != 0 {
    //         assert!(!ans[r][c]);
    //       }
    //       if r % 2 == 0 && c % 2 == 0 {
    //         assert!(ans[r][c]);
    //       }
    //     }
    //   }
    //   let mut g = vec![vec![vec![]; w]; h];
    //   for r in 0..h {
    //     for c in 0..w {
    //       if r + 1 < h && ans[r][c] && ans[r + 1][c] {
    //         g[r][c].push((r + 1, c));
    //         g[r + 1][c].push((r, c));
    //       }
    //       if c + 1 < w && ans[r][c] && ans[r][c + 1] {
    //         g[r][c].push((r, c + 1));
    //         g[r][c + 1].push((r, c));
    //       }
    //     }
    //   }
    //   let mut stack = vec![];
    //   let mut visited = vec![vec![false; w]; h];
    //   stack.push((0, 0, None, 0));
    //   visited[0][0] = true;
    //   while let Some((r, c, prev, d)) = stack.pop() {
    //     for &(r2, c2) in &g[r][c] {
    //       if Some((r2, c2)) == prev {
    //         continue;
    //       }
    //       if visited[r2][c2] {
    //         panic!("{} {}", r2, c2);
    //       }
    //       visited[r2][c2] = true;
    //       if (r2, c2) == (h - 1, w - 1) {
    //         assert_eq!(d + 1, x);
    //       }
    //       stack.push((r2, c2, Some((r, c)), d + 1));
    //     }
    //   }
    //   for r in 0..h {
    //     for c in 0..w {
    //       assert_eq!(visited[r][c], ans[r][c], "{} {}", r, c);
    //     }
    //   }
    // }
  }
  #[allow(unreachable_code)]
  Ok(())
}
0