結果
| 問題 |
No.151 セグメントフィッシング
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-03-20 12:30:33 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 10 ms / 5,000 ms |
| コード長 | 11,828 bytes |
| コンパイル時間 | 13,397 ms |
| コンパイル使用メモリ | 396,052 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-20 21:31:47 |
| 合計ジャッジ時間 | 15,314 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 19 |
ソースコード
fn main() {
let mut io = IO::new();
input!{ from io,
n: usize, q: usize,
query: [(char, usize, i64); q]
}
let m = ((q-1) / (2*n) +1) * 2 * n;
let mut seg = SegmentTree::<i64>::new(2*n);
for (t, &(c, x, z)) in query.iter().enumerate() {
// println!("{} {} {} {}", t, c, x, z);
match c {
'R' => {
let i = (x + m - t) % (2 * n);
let y = seg[i];
// println!("{} {}", i, z);
seg.set(i, y + z);
},
'L' => {
let i = (2 * n - x - 1 + m - t) % (2 * n);
let y = seg[i];
// println!("{} {}", i, z);
seg.set(i, y + z);
},
'C' => {
let z = z as usize;
let l1 = (x + m - t) % (2 * n);
let r1 = (z + m - t) % (2 * n);
let l2 = (2 * n - z + m - t) % (2 * n);
let r2 = (2 * n - x + m - t) % (2 * n);
// println!("{}..{}, {}..{}", l1, r1, l2, r2);
let ans = if l1 < r1 {
seg.fold(l1..r1)
} else {
seg.fold(l1..) + seg.fold(..r1)
} + if l2 < r2 {
seg.fold(l2..r2)
} else {
seg.fold(l2..) + seg.fold(..r2)
};
io.println(ans);
},
_ => unreachable!()
}
}
}
use std::ops::{ Index, Range, RangeBounds };
// * verified: https://judge.yosupo.jp/submission/28323, https://judge.yosupo.jp/submission/28333
// ------------ Segment Tree start ------------
pub struct SegmentTree<T: Monoid> {
n: usize,
size: usize,
node: Vec<T>
}
impl<T: Monoid> SegmentTree<T> {
pub fn new(n: usize) -> Self {
let size = n.next_power_of_two();
let node = vec![T::zero(); size * 2];
SegmentTree {
n, size, node
}
}
pub fn set(&mut self, mut i: usize, x: T) {
i += self.size;
self.node[i] = x;
self.fix(i);
}
fn fix(&mut self, mut i: usize) {
while i > 0 {
i >>= 1;
self.node[i] = self.node[i << 1].clone() + self.node[(i << 1) + 1].clone();
}
}
pub fn fold<R: RangeBounds<usize>>(&self, rng: R) -> T {
let Range { start, end } = bounds_within(rng, self.size);
let mut vl = T::zero();
let mut vr = T::zero();
let mut l = start + self.size;
let mut r = end + self.size;
while l < r {
if l & 1 == 1 {
vl = vl + self.node[l].clone();
l += 1;
}
if r & 1 == 1 {
r -= 1;
vr = self.node[r].clone() + vr;
}
l >>= 1;
r >>= 1;
}
vl + vr
}
/// (j, t) => pred(j-1) = true, pred(j) = false
pub fn partition(&self, pred: impl Fn(usize, &T) -> bool) -> (usize, T) {
assert!(pred(0, &T::zero()), "need to be pred(0, T::zero())");
if pred(self.n - 1, &self.node[1]) {
return (self.n - 1, self.node[1].clone())
}
let mut j = 1;
let mut current = T::zero();
let mut idx = 0;
let mut f = self.size;
while j < self.size {
j <<= 1;
f >>= 1;
let next = current.clone() + self.node[j].clone();
if pred(idx + f - 1, &next) {
current = next;
j |= 1;
idx += f;
}
}
(idx, current)
}
}
impl<T: Monoid> From<Vec<T>> for SegmentTree<T> {
fn from(vec: Vec<T>) -> Self {
let n = vec.len();
let size = n.next_power_of_two();
let mut node = vec![T::zero(); size << 1];
for (i, e) in vec.iter().cloned().enumerate() {
node[i + size] = e;
}
for i in (1..size).rev() {
node[i] = node[i << 1].clone() + node[(i << 1) + 1].clone();
}
SegmentTree {
n, size, node
}
}
}
impl<T: Monoid> Index<usize> for SegmentTree<T> {
type Output = T;
fn index(&self, i: usize) -> &Self::Output {
assert!(i < self.size, "index out of range: length is {}, but given {}.", self.size, i);
&self.node[i + self.size]
}
}
// ------------ Segment Tree end ------------
// ------------ algebraic traits start ------------
use std::marker::Sized;
use std::ops::*;
/// 元
pub trait Element: Sized + Clone + PartialEq {}
impl<T: Sized + Clone + PartialEq> Element for T {}
/// 結合性
pub trait Associative: Magma {}
/// マグマ
pub trait Magma: Element + Add<Output=Self> {}
impl<T: Element + Add<Output=Self>> Magma for T {}
/// 半群
pub trait SemiGroup: Magma + Associative {}
impl<T: Magma + Associative> SemiGroup for T {}
/// モノイド
pub trait Monoid: SemiGroup + Zero {}
impl<T: SemiGroup + Zero> Monoid for T {}
pub trait ComMonoid: Monoid + AddAssign {}
impl<T: Monoid + AddAssign> ComMonoid for T {}
/// 群
pub trait Group: Monoid + Neg<Output=Self> {}
impl<T: Monoid + Neg<Output=Self>> Group for T {}
pub trait ComGroup: Group + ComMonoid {}
impl<T: Group + ComMonoid> ComGroup for T {}
/// 半環
pub trait SemiRing: ComMonoid + Mul<Output=Self> + One {}
impl<T: ComMonoid + Mul<Output=Self> + One> SemiRing for T {}
/// 環
pub trait Ring: ComGroup + SemiRing {}
impl<T: ComGroup + SemiRing> Ring for T {}
pub trait ComRing: Ring + MulAssign {}
impl<T: Ring + MulAssign> ComRing for T {}
/// 体
pub trait Field: ComRing + Div<Output=Self> + DivAssign {}
impl<T: ComRing + Div<Output=Self> + DivAssign> Field for T {}
/// 加法単元
pub trait Zero: Element {
fn zero() -> Self;
fn is_zero(&self) -> bool {
*self == Self::zero()
}
}
/// 乗法単元
pub trait One: Element {
fn one() -> Self;
fn is_one(&self) -> bool {
*self == Self::one()
}
}
macro_rules! impl_integer {
($($T:ty,)*) => {
$(
impl Associative for $T {}
impl Zero for $T {
fn zero() -> Self { 0 }
fn is_zero(&self) -> bool { *self == 0 }
}
impl<'a> Zero for &'a $T {
fn zero() -> Self { &0 }
fn is_zero(&self) -> bool { *self == &0 }
}
impl One for $T {
fn one() -> Self { 1 }
fn is_one(&self) -> bool { *self == 1 }
}
impl<'a> One for &'a $T {
fn one() -> Self { &1 }
fn is_one(&self) -> bool { *self == &1 }
}
)*
};
}
impl_integer! {
i8, i16, i32, i64, i128, isize,
u8, u16, u32, u64, u128, usize,
}
// ------------ algebraic traits end ------------
use std::ops::Bound::{Excluded, Included, Unbounded};
/// 区間を配列サイズに収まるように丸める。
///
/// 与えられた区間 `r` と `0..len` の共通部分を、有界な半開区間として返す。
///
/// # Examples
/// ```
/// use bibliotheca::utils::bounds::bounds_within;
///
/// assert_eq!(bounds_within(.., 7), 0..7);
/// assert_eq!(bounds_within(..=4, 7), 0..5);
/// ```
pub fn bounds_within<R: RangeBounds<usize>>(r: R, len: usize) -> Range<usize> {
let e_ex = match r.end_bound() {
Included(&e) => e + 1,
Excluded(&e) => e,
Unbounded => len,
}
.min(len);
let s_in = match r.start_bound() {
Included(&s) => s,
Excluded(&s) => s + 1,
Unbounded => 0,
}
.min(e_ex);
s_in..e_ex
}
// ------------ io module start ------------
use std::io::{stdout, BufWriter, Read, StdoutLock, Write};
pub struct IO {
iter: std::str::SplitAsciiWhitespace<'static>,
buf: BufWriter<StdoutLock<'static>>,
}
impl IO {
pub fn new() -> Self {
let mut input = String::new();
std::io::stdin().read_to_string(&mut input).unwrap();
let input = Box::leak(input.into_boxed_str());
let out = Box::new(stdout());
IO {
iter: input.split_ascii_whitespace(),
buf: BufWriter::new(Box::leak(out).lock()),
}
}
fn scan_str(&mut self) -> &'static str {
self.iter.next().unwrap()
}
pub fn scan<T: Scan>(&mut self) -> <T as Scan>::Output {
<T as Scan>::scan(self)
}
pub fn scan_vec<T: Scan>(&mut self, n: usize) -> Vec<<T as Scan>::Output> {
(0..n).map(|_| self.scan::<T>()).collect()
}
pub fn print<T: Print>(&mut self, x: T) {
<T as Print>::print(self, x);
}
pub fn println<T: Print>(&mut self, x: T) {
self.print(x);
self.print("\n");
}
pub fn iterln<T: Print, I: Iterator<Item = T>>(&mut self, mut iter: I, delim: &str) {
if let Some(v) = iter.next() {
self.print(v);
for v in iter {
self.print(delim);
self.print(v);
}
}
self.print("\n");
}
pub fn flush(&mut self) {
self.buf.flush().unwrap();
}
}
impl Default for IO {
fn default() -> Self {
Self::new()
}
}
pub trait Scan {
type Output;
fn scan(io: &mut IO) -> Self::Output;
}
macro_rules! impl_scan {
($($t:tt),*) => {
$(
impl Scan for $t {
type Output = Self;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().parse().unwrap()
}
}
)*
};
}
impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String, f32, f64);
impl Scan for char {
type Output = char;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().chars().next().unwrap()
}
}
pub enum Bytes {}
impl Scan for Bytes {
type Output = &'static [u8];
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().as_bytes()
}
}
pub enum Chars {}
impl Scan for Chars {
type Output = Vec<char>;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().chars().collect()
}
}
pub enum Usize1 {}
impl Scan for Usize1 {
type Output = usize;
fn scan(s: &mut IO) -> Self::Output {
s.scan::<usize>().wrapping_sub(1)
}
}
impl<T: Scan, U: Scan> Scan for (T, U) {
type Output = (T::Output, U::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan> Scan for (T, U, V) {
type Output = (T::Output, U::Output, V::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan, W: Scan> Scan for (T, U, V, W) {
type Output = (T::Output, U::Output, V::Output, W::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s), W::scan(s))
}
}
pub trait Print {
fn print(w: &mut IO, x: Self);
}
macro_rules! impl_print_int {
($($t:ty),*) => {
$(
impl Print for $t {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x.to_string().as_bytes()).unwrap();
}
}
)*
};
}
impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64);
impl Print for u8 {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(&[x]).unwrap();
}
}
impl Print for &[u8] {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x).unwrap();
}
}
impl Print for &str {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl Print for String {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl<T: Print, U: Print> Print for (T, U) {
fn print(w: &mut IO, (x, y): Self) {
w.print(x);
w.print(" ");
w.print(y);
}
}
impl<T: Print, U: Print, V: Print> Print for (T, U, V) {
fn print(w: &mut IO, (x, y, z): Self) {
w.print(x);
w.print(" ");
w.print(y);
w.print(" ");
w.print(z);
}
}
mod neboccoio_macro {
#[macro_export]
macro_rules! input {
(@start $io:tt @read @rest) => {};
(@start $io:tt @read @rest, $($rest: tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @rest mut $($rest:tt)*) => {
input!(@start $io @read @mut [mut] @rest $($rest)*)
};
(@start $io:tt @read @rest $($rest:tt)*) => {
input!(@start $io @read @mut [] @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [[$kind:tt; $len1:expr]; $len2:expr] $($rest:tt)*) => {
let $($mut)* $var = (0..$len2).map(|_| $io.scan_vec::<$kind>($len1)).collect::<Vec<Vec<$kind>>>();
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => {
let $($mut)* $var = $io.scan_vec::<$kind>($len);
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => {
let $($mut)* $var = $io.scan::<$kind>();
input!(@start $io @read @rest $($rest)*)
};
(from $io:tt $($rest:tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
}
}
// ------------ io module end ------------