結果

問題 No.168 ものさし
ユーザー nebocco
提出日時 2021-03-20 12:33:16
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 72 ms / 2,000 ms
コード長 18,075 bytes
コンパイル時間 14,834 ms
コンパイル使用メモリ 401,948 KB
実行使用メモリ 19,848 KB
最終ジャッジ日時 2024-11-20 21:35:15
合計ジャッジ時間 16,563 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 19
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

fn main() {
let mut io = IO::new();
input!{ from io,
n: usize,
p: [(i64, i64); n]
}
let mut g = UndirectedGraph::new(n);
let mut edges = Vec::with_capacity(n*n);
for i in 0..n {
for j in i+1..n {
edges.push((i, j, (p[i].0 - p[j].0).pow(2) + (p[i].1 - p[j].1).pow(2)));
}
}
kruskal(&mut g, &mut edges);
let dist = tree_dfs(&g, 0).0;
let tar = dist[n-1];
let mut x = sqrt_floor(tar);
if x * x < tar {
x += 1;
}
io.println((x + 9) / 10 * 10);
}
pub fn sqrt_floor(x: i64) -> i64 {
let c = (64 - x.leading_zeros() + 1) / 2;
let mut v = if c < 32 {
1 << c
} else {
3_037_000_499
};
while v * v > x {
v = (v + x / v) / 2;
}
v
}
// ------------ Kruskal's algorithm start ------------
pub fn kruskal<C: Cost>(graph: &mut UndirectedGraph<C>, edges: &mut [(usize, usize, C)]) -> Vec<(usize, usize, C)> {
edges.sort_by_key(|x| x.2);
let mut res = Vec::with_capacity(graph.size() - 1);
let mut uf = UnionFind::new(graph.size());
for &e in edges.iter() {
if uf.unite(e.0, e.1).is_ok() {
graph.add_edge(e.0, e.1, e.2);
res.push(e);
}
}
res
}
// ------------ Kruskal's algorithm end ------------
pub fn tree_dfs<C: Cost, G: Graph<C>>(g: &G, root: usize)
-> (Vec<C>, Vec<Option<usize>>, Vec<usize>, Vec<usize>)
{
let n = g.size();
let mut euler = Vec::with_capacity(n);
let mut dist = vec![C::MAX; n];
dist[root] = C::zero();
let mut par = vec![None; n];
let mut size = vec![1; n];
let mut q = vec![root];
while let Some(v) = q.pop() {
euler.push(v);
for e in g.edges_from(v) {
if par[v] == Some(e.to) { continue; }
par[e.to] = Some(v);
dist[e.to] = dist[v].max(e.cost);
q.push(e.to);
}
}
for &v in euler.iter().skip(1).rev() {
size[par[v].unwrap()] += size[v];
}
(dist, par, size, euler)
}
// ------------ UnionFind start ------------
#[derive(Clone, Debug)]
pub struct UnionFind(Vec<isize>);
impl UnionFind {
pub fn new(len: usize) -> Self {
Self(vec![-1; len])
}
pub fn find(&mut self, i: usize) -> usize {
self._climb(i).0
}
pub fn size(&mut self, i: usize) -> usize {
self._climb(i).1
}
pub fn unite(&mut self, u: usize, v: usize) -> Result<(), ()> {
let (mut u, su) = self._climb(u);
let (mut v, sv) = self._climb(v);
if u == v { return Err(()); }
if su < sv {
std::mem::swap(&mut u, &mut v);
}
self.0[u] += self.0[v];
self.0[v] = u as isize;
Ok(())
}
pub fn is_same(&mut self, u: usize, v:usize) -> bool {
self.find(u) == self.find(v)
}
fn _climb(&mut self, i: usize) -> (usize, usize) {
assert!(i < self.0.len());
let mut v = i;
while self.0[v] >= 0 {
let p = self.0[v] as usize;
if self.0[p] >= 0 {
self.0[v] = self.0[p];
v = self.0[p] as usize;
} else {
v = p;
}
}
(v, -self.0[v] as usize)
}
}
// ------------ UnionFind end ------------
// TODO: verify
// ------------ Potentialized UnionFind start ------------
#[derive(Clone, Debug)]
pub struct PotentializedUnionFind<T>{
data: Vec<isize>,
ws: Vec<T>
}
impl<T: Group> PotentializedUnionFind<T> {
pub fn new(len: usize) -> Self {
Self{
data: vec![-1; len],
ws: vec![T::zero(); len]
}
}
pub fn find(&mut self, i: usize) -> usize {
self._climb(i).0
}
pub fn size(&mut self, i: usize) -> usize {
self._climb(i).1
}
pub fn potential(&mut self, i: usize) -> T {
self._climb(i).2
}
/// potential[v] - potential[u] = w
/// keep potential[u] unchanged
pub fn unite(&mut self, u: usize, v: usize, mut w: T) -> Result<(), ()> {
let (u, su, wu) = self._climb(u);
let (v, sv, wv) = self._climb(v);
if u == v {
return if w == -wu + wv { Ok(()) } else { Err(()) };
}
w = -self.ws[u].clone() + wu + w + self.ws[v].clone() + -wv;
if su < sv {
self.data[v] += self.data[u];
self.data[u] = v as isize;
self.ws[v] = self.ws[u].clone() + w.clone();
self.ws[u] = -w.clone();
} else {
self.data[u] += self.data[v];
self.data[v] = u as isize;
self.ws[v] = w.clone();
}
Ok(())
}
pub fn is_same(&mut self, u: usize, v:usize) -> bool {
self.find(u) == self.find(v)
}
/// potential[v] - potential[u]
pub fn diff(&mut self, u: usize, v: usize) -> Option<T> {
let (u, _, wu) = self._climb(u);
let (v, _, wv) = self._climb(v);
if u == v {
Some(-wu + wv)
} else {
None
}
}
pub fn weigh(&mut self, u: usize, w: T) {
let p = self.find(u);
self.ws[p] = self.ws[p].clone() + w;
}
/// _climb(i) -> (root, group size, potential)
fn _climb(&mut self, i: usize) -> (usize, usize, T) {
assert!(i < self.data.len());
let mut v = i;
let mut w = T::zero();
while self.data[v] >= 0 {
w = self.ws[v].clone() + w;
let p = self.data[v] as usize;
if self.data[p] >= 0 {
self.data[v] = self.data[p];
self.ws[v] = self.ws[p].clone() + self.ws[v].clone();
}
v = p;
}
w = self.ws[v].clone() + w;
(v, -self.data[v] as usize, w)
}
}
// ------------ Potentialized UnionFind end ------------
// TODO: verify
// ------------ Iterative UnionFind start ------------
#[derive(Clone, Debug)]
pub struct IterativeUnionFind(Vec<isize>, Vec<usize>);
impl IterativeUnionFind {
pub fn new(len: usize) -> Self {
Self(vec![-1; len], (0..len).collect())
}
pub fn find(&mut self, i: usize) -> usize {
self._climb(i).0
}
pub fn size(&mut self, i: usize) -> usize {
self._climb(i).1
}
pub fn unite(&mut self, u: usize, v: usize) -> Result<(), ()> {
let (mut u, su) = self._climb(u);
let (mut v, sv) = self._climb(v);
if u == v { return Err(()); }
if su < sv {
std::mem::swap(&mut u, &mut v);
}
self.0[u] += self.0[v];
self.0[v] = u as isize;
self.1.swap(u, v);
Ok(())
}
pub fn is_same(&mut self, u: usize, v:usize) -> bool {
self.find(u) == self.find(v)
}
pub fn iter_group(&mut self, u: usize) -> Vec<usize> {
let mut res = Vec::with_capacity(self.size(u));
res.push(u);
let mut v = self.1[u];
while v != u {
res.push(v);
v = self.1[v];
}
res
}
fn _climb(&mut self, i: usize) -> (usize, usize) {
assert!(i < self.0.len());
let mut v = i;
while self.0[v] >= 0 {
let p = self.0[v] as usize;
if self.0[p] >= 0 {
self.0[v] = self.0[p];
v = self.0[p] as usize;
} else {
v = p;
}
}
(v, -self.0[v] as usize)
}
}
// ------------ Iterative UnionFind end ------------
// ------------ Graph impl start ------------
pub trait Cost:
Element
+ Clone + Copy + std::fmt::Display
+ Eq + Ord
+ Zero + One
+ Add<Output = Self> + AddAssign
+ Sub<Output = Self>
+ Neg<Output = Self>
{
const MAX: Self;
}
#[derive(Copy, Clone)]
pub struct Edge<C = Void> {
// pub from: usize,
pub to: usize,
pub cost: C,
pub id: usize
}
pub struct UndirectedGraph<C>(pub Vec<Vec<Edge<C>>>, pub usize);
pub struct DirectedGraph<C>{
pub forward: Vec<Vec<Edge<C>>>,
pub backward: Vec<Vec<Edge<C>>>,
pub count: usize,
}
pub trait Graph<C: Element> {
fn new(size: usize) -> Self;
fn size(&self) -> usize;
fn add_edge(&mut self, u: usize, v: usize, cost: C);
fn edges_from(&self, v: usize) -> std::slice::Iter<Edge<C>>;
}
impl<C: Element> Graph<C> for UndirectedGraph<C> {
fn new(size: usize) -> Self {
Self(vec![Vec::<Edge<C>>::new(); size], 0)
}
fn size(&self) -> usize {
self.0.len()
}
fn add_edge(&mut self, u: usize, v: usize, cost: C) {
self.0[u].push(Edge{ to: v, cost: cost.clone(), id: self.1 });
self.0[v].push(Edge{ to: u, cost: cost.clone(), id: self.1 });
self.1 += 1;
}
fn edges_from(&self, v: usize) -> std::slice::Iter<Edge<C>> {
self.0[v].iter()
}
}
impl<C: Element> Graph<C> for DirectedGraph<C> {
fn new(size: usize) -> Self {
Self {
forward: vec![Vec::<Edge<C>>::new(); size],
backward: vec![Vec::<Edge<C>>::new(); size],
count: 0
}
}
fn size(&self) -> usize {
self.forward.len()
}
fn add_edge(&mut self, u: usize, v: usize, cost: C) {
self.forward[u].push(Edge{ to: v, cost: cost.clone(), id: self.count });
self.backward[v].push(Edge{ to: u, cost: cost.clone(), id: self.count });
self.count += 1;
}
fn edges_from(&self, v: usize) -> std::slice::Iter<Edge<C>> {
self.forward[v].iter()
}
}
impl<C: Element> DirectedGraph<C> {
pub fn edges_to(&self, u: usize) -> std::slice::Iter<Edge<C>> {
self.backward[u].iter()
}
pub fn reverse(&self) -> Self {
Self {
forward: self.backward.clone(),
backward: self.forward.clone(),
count: self.count,
}
}
}
macro_rules! impl_cost {
($($T:ident,)*) => {
$(
impl Cost for $T { const MAX: Self = std::$T::MAX; }
)*
};
}
impl_cost! {
i8, i16, i32, i64, i128, isize,
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct Void();
impl std::fmt::Display for Void {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "")
}
}
impl Zero for Void {
fn zero() -> Self { Void() }
fn is_zero(&self) -> bool { true }
}
impl One for Void {
fn one() -> Self { Void() }
fn is_one(&self) -> bool { true }
}
impl Add for Void {
type Output = Self;
fn add(self, _: Self) -> Self { Void() }
}
impl AddAssign for Void {
fn add_assign(&mut self, _: Self) {}
}
impl Sub for Void {
type Output = Self;
fn sub(self, _: Self) -> Self { Void() }
}
impl Neg for Void {
type Output = Self;
fn neg(self) -> Self { Void() }
}
impl Cost for Void { const MAX: Self = Void(); }
// ------------ Graph impl end ------------
// ------------ algebraic traits start ------------
use std::marker::Sized;
use std::ops::*;
///
pub trait Element: Sized + Clone + PartialEq {}
impl<T: Sized + Clone + PartialEq> Element for T {}
///
pub trait Associative: Magma {}
///
pub trait Magma: Element + Add<Output=Self> {}
impl<T: Element + Add<Output=Self>> Magma for T {}
///
pub trait SemiGroup: Magma + Associative {}
impl<T: Magma + Associative> SemiGroup for T {}
///
pub trait Monoid: SemiGroup + Zero {}
impl<T: SemiGroup + Zero> Monoid for T {}
pub trait ComMonoid: Monoid + AddAssign {}
impl<T: Monoid + AddAssign> ComMonoid for T {}
///
pub trait Group: Monoid + Neg<Output=Self> {}
impl<T: Monoid + Neg<Output=Self>> Group for T {}
pub trait ComGroup: Group + ComMonoid {}
impl<T: Group + ComMonoid> ComGroup for T {}
///
pub trait SemiRing: ComMonoid + Mul<Output=Self> + One {}
impl<T: ComMonoid + Mul<Output=Self> + One> SemiRing for T {}
///
pub trait Ring: ComGroup + SemiRing {}
impl<T: ComGroup + SemiRing> Ring for T {}
pub trait ComRing: Ring + MulAssign {}
impl<T: Ring + MulAssign> ComRing for T {}
///
pub trait Field: ComRing + Div<Output=Self> + DivAssign {}
impl<T: ComRing + Div<Output=Self> + DivAssign> Field for T {}
///
pub trait Zero: Element {
fn zero() -> Self;
fn is_zero(&self) -> bool {
*self == Self::zero()
}
}
///
pub trait One: Element {
fn one() -> Self;
fn is_one(&self) -> bool {
*self == Self::one()
}
}
macro_rules! impl_integer {
($($T:ty,)*) => {
$(
impl Associative for $T {}
impl Zero for $T {
fn zero() -> Self { 0 }
fn is_zero(&self) -> bool { *self == 0 }
}
impl<'a> Zero for &'a $T {
fn zero() -> Self { &0 }
fn is_zero(&self) -> bool { *self == &0 }
}
impl One for $T {
fn one() -> Self { 1 }
fn is_one(&self) -> bool { *self == 1 }
}
impl<'a> One for &'a $T {
fn one() -> Self { &1 }
fn is_one(&self) -> bool { *self == &1 }
}
)*
};
}
impl_integer! {
i8, i16, i32, i64, i128, isize,
u8, u16, u32, u64, u128, usize,
}
// ------------ algebraic traits end ------------
// ------------ io module start ------------
use std::io::{stdout, BufWriter, Read, StdoutLock, Write};
pub struct IO {
iter: std::str::SplitAsciiWhitespace<'static>,
buf: BufWriter<StdoutLock<'static>>,
}
impl IO {
pub fn new() -> Self {
let mut input = String::new();
std::io::stdin().read_to_string(&mut input).unwrap();
let input = Box::leak(input.into_boxed_str());
let out = Box::new(stdout());
IO {
iter: input.split_ascii_whitespace(),
buf: BufWriter::new(Box::leak(out).lock()),
}
}
fn scan_str(&mut self) -> &'static str {
self.iter.next().unwrap()
}
pub fn scan<T: Scan>(&mut self) -> <T as Scan>::Output {
<T as Scan>::scan(self)
}
pub fn scan_vec<T: Scan>(&mut self, n: usize) -> Vec<<T as Scan>::Output> {
(0..n).map(|_| self.scan::<T>()).collect()
}
pub fn print<T: Print>(&mut self, x: T) {
<T as Print>::print(self, x);
}
pub fn println<T: Print>(&mut self, x: T) {
self.print(x);
self.print("\n");
}
pub fn iterln<T: Print, I: Iterator<Item = T>>(&mut self, mut iter: I, delim: &str) {
if let Some(v) = iter.next() {
self.print(v);
for v in iter {
self.print(delim);
self.print(v);
}
}
self.print("\n");
}
pub fn flush(&mut self) {
self.buf.flush().unwrap();
}
}
impl Default for IO {
fn default() -> Self {
Self::new()
}
}
pub trait Scan {
type Output;
fn scan(io: &mut IO) -> Self::Output;
}
macro_rules! impl_scan {
($($t:tt),*) => {
$(
impl Scan for $t {
type Output = Self;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().parse().unwrap()
}
}
)*
};
}
impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String, f32, f64);
impl Scan for char {
type Output = char;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().chars().next().unwrap()
}
}
pub enum Bytes {}
impl Scan for Bytes {
type Output = &'static [u8];
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().as_bytes()
}
}
pub enum Chars {}
impl Scan for Chars {
type Output = Vec<char>;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().chars().collect()
}
}
pub enum Usize1 {}
impl Scan for Usize1 {
type Output = usize;
fn scan(s: &mut IO) -> Self::Output {
s.scan::<usize>().wrapping_sub(1)
}
}
impl<T: Scan, U: Scan> Scan for (T, U) {
type Output = (T::Output, U::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan> Scan for (T, U, V) {
type Output = (T::Output, U::Output, V::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan, W: Scan> Scan for (T, U, V, W) {
type Output = (T::Output, U::Output, V::Output, W::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s), W::scan(s))
}
}
pub trait Print {
fn print(w: &mut IO, x: Self);
}
macro_rules! impl_print_int {
($($t:ty),*) => {
$(
impl Print for $t {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x.to_string().as_bytes()).unwrap();
}
}
)*
};
}
impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64);
impl Print for u8 {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(&[x]).unwrap();
}
}
impl Print for &[u8] {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x).unwrap();
}
}
impl Print for &str {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl Print for String {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl<T: Print, U: Print> Print for (T, U) {
fn print(w: &mut IO, (x, y): Self) {
w.print(x);
w.print(" ");
w.print(y);
}
}
impl<T: Print, U: Print, V: Print> Print for (T, U, V) {
fn print(w: &mut IO, (x, y, z): Self) {
w.print(x);
w.print(" ");
w.print(y);
w.print(" ");
w.print(z);
}
}
mod neboccoio_macro {
#[macro_export]
macro_rules! input {
(@start $io:tt @read @rest) => {};
(@start $io:tt @read @rest, $($rest: tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @rest mut $($rest:tt)*) => {
input!(@start $io @read @mut [mut] @rest $($rest)*)
};
(@start $io:tt @read @rest $($rest:tt)*) => {
input!(@start $io @read @mut [] @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [[$kind:tt; $len1:expr]; $len2:expr] $($rest:tt)*) => {
let $($mut)* $var = (0..$len2).map(|_| $io.scan_vec::<$kind>($len1)).collect::<Vec<Vec<$kind>>>();
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => {
let $($mut)* $var = $io.scan_vec::<$kind>($len);
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => {
let $($mut)* $var = $io.scan::<$kind>();
input!(@start $io @read @rest $($rest)*)
};
(from $io:tt $($rest:tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
}
}
// ------------ io module end ------------
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0