結果
問題 | No.177 制作進行の宮森あおいです! |
ユーザー | nebocco |
提出日時 | 2021-03-20 12:33:44 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 1 ms / 2,000 ms |
コード長 | 13,915 bytes |
コンパイル時間 | 12,525 ms |
コンパイル使用メモリ | 402,428 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-11-20 21:36:11 |
合計ジャッジ時間 | 13,660 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,816 KB |
testcase_03 | AC | 1 ms
6,816 KB |
testcase_04 | AC | 1 ms
6,816 KB |
testcase_05 | AC | 1 ms
6,820 KB |
testcase_06 | AC | 1 ms
6,816 KB |
testcase_07 | AC | 1 ms
6,816 KB |
testcase_08 | AC | 1 ms
6,816 KB |
testcase_09 | AC | 1 ms
6,816 KB |
testcase_10 | AC | 1 ms
6,816 KB |
testcase_11 | AC | 1 ms
6,816 KB |
testcase_12 | AC | 1 ms
6,816 KB |
testcase_13 | AC | 1 ms
6,816 KB |
testcase_14 | AC | 1 ms
6,816 KB |
testcase_15 | AC | 1 ms
6,816 KB |
ソースコード
fn main() { let mut io = IO::new(); input!{ from io, w: i32, n: usize, jl: [i32; n], m: usize, cl: [i32; m], } let mut din = Dinic::new(); let source = n + m; let sink = n + m + 1; for i in 0..n { din.add_edge(source, i, jl[i]); } for j in 0..m { din.add_edge(n+j, sink, cl[j]); } for j in 0..m { let t = io.scan::<usize>(); let ng = io.scan_vec::<Usize1>(t); let mut idx = 0; for i in 0..n { if idx < t && i == ng[idx] { idx += 1; } else { din.add_edge(i, n+j, w); } } } io.println( if din.max_flow(source, sink).0 < w { "BANSAKUTSUKITA" } else { "SHIROBAKO" } ); } // ------------ Dinic's algorithm start ------------ use std::cmp::{max, min}; struct Edge<F> { dst: usize, rev: usize, flow: F, upper: F, } #[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq, Debug, Hash)] pub struct EdgeId(usize, usize); struct TemporaryData { n: usize, s: usize, t: usize, label: Vec<usize>, current_edge: Vec<usize>, buffer: Vec<usize>, } #[derive(Default)] pub struct Dinic<F: Flow> { edges: Vec<Vec<Edge<F>>>, } impl<F: Flow> Dinic<F> { pub fn new() -> Self { Self { edges: Vec::new() } } pub fn add_edge(&mut self, src: usize, dst: usize, capacity: F) -> EdgeId { let n = max(max(src, dst) + 1, self.edges.len()); self.edges.resize_with(n, || Vec::with_capacity(4)); let e = self.edges[src].len(); let re = self.edges[dst].len() + if src == dst { 1 } else { 0 }; self.edges[src].push(Edge { dst, rev: re, flow: F::zero(), upper: capacity, }); self.edges[dst].push(Edge { dst: src, rev: e, flow: capacity, upper: capacity, }); EdgeId(src, e) } fn prepare_data(&mut self, s: usize, t: usize) -> TemporaryData { let n = max(max(s, t) + 1, self.edges.len()); self.edges.resize_with(n, Default::default); TemporaryData { n, s, t, label: vec![0; n], current_edge: vec![0; n], buffer: Vec::with_capacity(n), } } fn dual(&self, data: &mut TemporaryData) -> bool { let n = data.n; data.label.iter_mut().for_each(|v| *v = n); data.current_edge.iter_mut().for_each(|v| *v = 0); let mut queue = std::mem::take(&mut data.buffer); queue.clear(); queue.push(data.s); data.label[data.s] = 0; let mut q_pos = 0; 'new_node: while q_pos < queue.len() { let u = queue[q_pos]; q_pos += 1; let next_label = data.label[u] + 1; for e in &self.edges[u] { if e.flow < e.upper && data.label[e.dst] == data.n { data.label[e.dst] = next_label; if e.dst == data.t { break 'new_node; } queue.push(e.dst); } } } data.buffer = queue; data.label[data.t] < n } #[allow(clippy::many_single_char_names)] fn primal_dfs(&mut self, u: usize, data: &mut TemporaryData, mut limit: F) -> F { if u == data.s { return limit; } let mut total = F::zero(); let mut i = data.current_edge[u]; while i < self.edges[u].len() { let e = &self.edges[u][i]; if e.flow.is_positive() && data.label[e.dst] < data.label[u] { let new_limit = min(limit, e.flow); let v = e.dst; let f = self.primal_dfs(v, data, new_limit); if !f.is_zero() { let e = &mut self.edges[u][i]; let v = e.dst; let r = e.rev; e.flow -= f; self.edges[v][r].flow += f; total += f; limit -= f; if limit.is_zero() { if self.edges[u][i].flow.is_zero() { i += 1; } data.current_edge[u] = i; return total; } } } i += 1; } data.current_edge[u] = !0; data.label[u] = data.n; total } pub fn augment(&mut self, s: usize, t: usize, limit: F) -> F { assert_ne!(s, t, "Source and sink vertex should be different"); let mut data = self.prepare_data(s, t); let mut flow = F::zero(); while self.dual(&mut data) { flow += self.primal_dfs(data.t, &mut data, limit - flow); if flow == limit { break; } } flow } pub fn max_flow(&mut self, s: usize, t: usize) -> (F, Vec<usize>) { assert_ne!(s, t, "Source and sink vertex should be different"); let mut data = self.prepare_data(s, t); let inf = self.edges[s] .iter() .map(|e| e.upper - e.flow) .fold(F::zero(), |a, b| a + b); let mut flow = F::zero(); while self.dual(&mut data) { flow += self.primal_dfs(data.t, &mut data, inf); } let label = std::mem::take(&mut data.label); let cut = label .into_iter() .enumerate() .filter(|(_, l)| l < &data.n) .map(|(i, _)| i) .collect(); (flow, cut) } pub fn get_flow(&self, e: &EdgeId) -> F { self.edges[e.0][e.1].flow } } // ------------ Dinic's algorithm start ------------ use std::fmt::Display; pub trait Cost: Element + Display + Clone + Copy + Eq + Ord + Zero + One + Add<Output = Self> + AddAssign + Sub<Output = Self> + Mul<Output = Self> + Neg<Output = Self> { fn is_positive(&self) -> bool { self > &Self::zero() } fn is_negative(&self) -> bool { self < &Self::zero() } const MAX: Self; } pub trait Flow: Cost + SubAssign { fn abs(&self) -> Self { if self.is_negative() { -*self } else { *self } } } macro_rules! impl_flow { ($($T:ident,)*) => { $( impl Flow for $T {} impl Cost for $T { const MAX: Self = std::$T::MAX; } )* }; } impl_flow!( i8, i16, i32, i64, i128, isize, ); // ------------ algebraic traits start ------------ use std::marker::Sized; use std::ops::*; /// 元 pub trait Element: Sized + Clone + PartialEq {} impl<T: Sized + Clone + PartialEq> Element for T {} /// 結合性 pub trait Associative: Magma {} /// マグマ pub trait Magma: Element + Add<Output=Self> {} impl<T: Element + Add<Output=Self>> Magma for T {} /// 半群 pub trait SemiGroup: Magma + Associative {} impl<T: Magma + Associative> SemiGroup for T {} /// モノイド pub trait Monoid: SemiGroup + Zero {} impl<T: SemiGroup + Zero> Monoid for T {} pub trait ComMonoid: Monoid + AddAssign {} impl<T: Monoid + AddAssign> ComMonoid for T {} /// 群 pub trait Group: Monoid + Neg<Output=Self> {} impl<T: Monoid + Neg<Output=Self>> Group for T {} pub trait ComGroup: Group + ComMonoid {} impl<T: Group + ComMonoid> ComGroup for T {} /// 半環 pub trait SemiRing: ComMonoid + Mul<Output=Self> + One {} impl<T: ComMonoid + Mul<Output=Self> + One> SemiRing for T {} /// 環 pub trait Ring: ComGroup + SemiRing {} impl<T: ComGroup + SemiRing> Ring for T {} pub trait ComRing: Ring + MulAssign {} impl<T: Ring + MulAssign> ComRing for T {} /// 体 pub trait Field: ComRing + Div<Output=Self> + DivAssign {} impl<T: ComRing + Div<Output=Self> + DivAssign> Field for T {} /// 加法単元 pub trait Zero: Element { fn zero() -> Self; fn is_zero(&self) -> bool { *self == Self::zero() } } /// 乗法単元 pub trait One: Element { fn one() -> Self; fn is_one(&self) -> bool { *self == Self::one() } } macro_rules! impl_integer { ($($T:ty,)*) => { $( impl Associative for $T {} impl Zero for $T { fn zero() -> Self { 0 } fn is_zero(&self) -> bool { *self == 0 } } impl<'a> Zero for &'a $T { fn zero() -> Self { &0 } fn is_zero(&self) -> bool { *self == &0 } } impl One for $T { fn one() -> Self { 1 } fn is_one(&self) -> bool { *self == 1 } } impl<'a> One for &'a $T { fn one() -> Self { &1 } fn is_one(&self) -> bool { *self == &1 } } )* }; } impl_integer! { i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize, } // ------------ algebraic traits end ------------ // ------------ io module start ------------ use std::io::{stdout, BufWriter, Read, StdoutLock, Write}; pub struct IO { iter: std::str::SplitAsciiWhitespace<'static>, buf: BufWriter<StdoutLock<'static>>, } impl IO { pub fn new() -> Self { let mut input = String::new(); std::io::stdin().read_to_string(&mut input).unwrap(); let input = Box::leak(input.into_boxed_str()); let out = Box::new(stdout()); IO { iter: input.split_ascii_whitespace(), buf: BufWriter::new(Box::leak(out).lock()), } } fn scan_str(&mut self) -> &'static str { self.iter.next().unwrap() } pub fn scan<T: Scan>(&mut self) -> <T as Scan>::Output { <T as Scan>::scan(self) } pub fn scan_vec<T: Scan>(&mut self, n: usize) -> Vec<<T as Scan>::Output> { (0..n).map(|_| self.scan::<T>()).collect() } pub fn print<T: Print>(&mut self, x: T) { <T as Print>::print(self, x); } pub fn println<T: Print>(&mut self, x: T) { self.print(x); self.print("\n"); } pub fn iterln<T: Print, I: Iterator<Item = T>>(&mut self, mut iter: I, delim: &str) { if let Some(v) = iter.next() { self.print(v); for v in iter { self.print(delim); self.print(v); } } self.print("\n"); } pub fn flush(&mut self) { self.buf.flush().unwrap(); } } impl Default for IO { fn default() -> Self { Self::new() } } pub trait Scan { type Output; fn scan(io: &mut IO) -> Self::Output; } macro_rules! impl_scan { ($($t:tt),*) => { $( impl Scan for $t { type Output = Self; fn scan(s: &mut IO) -> Self::Output { s.scan_str().parse().unwrap() } } )* }; } impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String, f32, f64); impl Scan for char { type Output = char; fn scan(s: &mut IO) -> Self::Output { s.scan_str().chars().next().unwrap() } } pub enum Bytes {} impl Scan for Bytes { type Output = &'static [u8]; fn scan(s: &mut IO) -> Self::Output { s.scan_str().as_bytes() } } pub enum Chars {} impl Scan for Chars { type Output = Vec<char>; fn scan(s: &mut IO) -> Self::Output { s.scan_str().chars().collect() } } pub enum Usize1 {} impl Scan for Usize1 { type Output = usize; fn scan(s: &mut IO) -> Self::Output { s.scan::<usize>().wrapping_sub(1) } } impl<T: Scan, U: Scan> Scan for (T, U) { type Output = (T::Output, U::Output); fn scan(s: &mut IO) -> Self::Output { (T::scan(s), U::scan(s)) } } impl<T: Scan, U: Scan, V: Scan> Scan for (T, U, V) { type Output = (T::Output, U::Output, V::Output); fn scan(s: &mut IO) -> Self::Output { (T::scan(s), U::scan(s), V::scan(s)) } } impl<T: Scan, U: Scan, V: Scan, W: Scan> Scan for (T, U, V, W) { type Output = (T::Output, U::Output, V::Output, W::Output); fn scan(s: &mut IO) -> Self::Output { (T::scan(s), U::scan(s), V::scan(s), W::scan(s)) } } pub trait Print { fn print(w: &mut IO, x: Self); } macro_rules! impl_print_int { ($($t:ty),*) => { $( impl Print for $t { fn print(w: &mut IO, x: Self) { w.buf.write_all(x.to_string().as_bytes()).unwrap(); } } )* }; } impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64); impl Print for u8 { fn print(w: &mut IO, x: Self) { w.buf.write_all(&[x]).unwrap(); } } impl Print for &[u8] { fn print(w: &mut IO, x: Self) { w.buf.write_all(x).unwrap(); } } impl Print for &str { fn print(w: &mut IO, x: Self) { w.print(x.as_bytes()); } } impl Print for String { fn print(w: &mut IO, x: Self) { w.print(x.as_bytes()); } } impl<T: Print, U: Print> Print for (T, U) { fn print(w: &mut IO, (x, y): Self) { w.print(x); w.print(" "); w.print(y); } } impl<T: Print, U: Print, V: Print> Print for (T, U, V) { fn print(w: &mut IO, (x, y, z): Self) { w.print(x); w.print(" "); w.print(y); w.print(" "); w.print(z); } } mod neboccoio_macro { #[macro_export] macro_rules! input { (@start $io:tt @read @rest) => {}; (@start $io:tt @read @rest, $($rest: tt)*) => { input!(@start $io @read @rest $($rest)*) }; (@start $io:tt @read @rest mut $($rest:tt)*) => { input!(@start $io @read @mut [mut] @rest $($rest)*) }; (@start $io:tt @read @rest $($rest:tt)*) => { input!(@start $io @read @mut [] @rest $($rest)*) }; (@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [[$kind:tt; $len1:expr]; $len2:expr] $($rest:tt)*) => { let $($mut)* $var = (0..$len2).map(|_| $io.scan_vec::<$kind>($len1)).collect::<Vec<Vec<$kind>>>(); input!(@start $io @read @rest $($rest)*) }; (@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => { let $($mut)* $var = $io.scan_vec::<$kind>($len); input!(@start $io @read @rest $($rest)*) }; (@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => { let $($mut)* $var = $io.scan::<$kind>(); input!(@start $io @read @rest $($rest)*) }; (from $io:tt $($rest:tt)*) => { input!(@start $io @read @rest $($rest)*) }; } } // ------------ io module end ------------