結果
問題 | No.1115 二つの数列 / Two Sequences |
ユーザー | nebocco |
提出日時 | 2021-03-20 12:36:08 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 12 ms / 2,000 ms |
コード長 | 10,846 bytes |
コンパイル時間 | 14,184 ms |
コンパイル使用メモリ | 390,700 KB |
実行使用メモリ | 6,272 KB |
最終ジャッジ日時 | 2024-11-20 21:39:24 |
合計ジャッジ時間 | 16,613 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 11 ms
5,632 KB |
testcase_04 | AC | 12 ms
6,272 KB |
testcase_05 | AC | 11 ms
5,632 KB |
testcase_06 | AC | 9 ms
5,248 KB |
testcase_07 | AC | 12 ms
6,144 KB |
testcase_08 | AC | 1 ms
5,248 KB |
testcase_09 | AC | 7 ms
5,248 KB |
testcase_10 | AC | 10 ms
6,272 KB |
testcase_11 | AC | 1 ms
5,248 KB |
testcase_12 | AC | 12 ms
6,144 KB |
testcase_13 | AC | 12 ms
6,144 KB |
testcase_14 | AC | 11 ms
6,144 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 1 ms
5,248 KB |
testcase_17 | AC | 1 ms
5,248 KB |
testcase_18 | AC | 1 ms
5,248 KB |
testcase_19 | AC | 1 ms
5,248 KB |
testcase_20 | AC | 1 ms
5,248 KB |
testcase_21 | AC | 1 ms
5,248 KB |
testcase_22 | AC | 1 ms
5,248 KB |
testcase_23 | AC | 2 ms
5,248 KB |
testcase_24 | AC | 5 ms
5,248 KB |
testcase_25 | AC | 9 ms
5,248 KB |
testcase_26 | AC | 3 ms
5,248 KB |
testcase_27 | AC | 6 ms
5,248 KB |
testcase_28 | AC | 8 ms
5,248 KB |
testcase_29 | AC | 10 ms
5,248 KB |
testcase_30 | AC | 12 ms
6,144 KB |
testcase_31 | AC | 4 ms
5,248 KB |
testcase_32 | AC | 3 ms
5,248 KB |
testcase_33 | AC | 10 ms
5,760 KB |
testcase_34 | AC | 1 ms
5,248 KB |
testcase_35 | AC | 1 ms
5,248 KB |
testcase_36 | AC | 1 ms
5,248 KB |
testcase_37 | AC | 1 ms
5,248 KB |
testcase_38 | AC | 1 ms
5,248 KB |
testcase_39 | AC | 1 ms
5,248 KB |
ソースコード
fn main() { let mut io = IO::new(); input!{ from io, n: usize, a: [Usize1; n], b: [Usize1; n] } let mut re = vec![0; n]; for i in 0..n { re[b[i]] = i; } let f = a.into_iter().map(|i| re[i]).collect::<Vec<_>>(); let mut ans = 0; let mut bit = FenwickTree::<i64>::new(n); for &x in f.iter().rev() { ans += bit.sum(..x); bit.add(x, 1); } io.println(ans); } // ------------ FenwickTree with generics start ------------ #[derive(Clone, Debug)] pub struct FenwickTree<T>(Vec<T>); impl<T: Monoid> FenwickTree<T> { #[inline] fn lsb(x: usize) -> usize { x & x.wrapping_neg() } pub fn new(n: usize) -> Self { Self(vec![T::zero(); n+1]) } pub fn prefix_sum(&self, i: usize) -> T { std::iter::successors(Some(i), |&i| Some(i - Self::lsb(i))) .take_while(|&i| i != 0) .map(|i| self.0[i].clone()) .fold(T::zero(), |sum, x| sum + x) } pub fn add(&mut self, i: usize, x: T) { let n = self.0.len(); std::iter::successors(Some(i + 1), |&i| Some(i + Self::lsb(i))) .take_while(|&i| i < n) .for_each(|i| self.0[i] = self.0[i].clone() + x.clone()); } /// pred(j, sum(..j)) && !pred(j+1, sum(..j+1)) pub fn partition(&self, pred: impl Fn(usize, &T) -> bool) -> (usize, T) { assert!(pred(0, &self.0[0]), "need to be pred(0, 0)"); let mut j = 0; let mut current = self.0[0].clone(); let n = self.0.len(); for d in std::iter::successors(Some(n.next_power_of_two() >> 1), |&d| { Some(d >> 1)}) .take_while(|&d| d != 0) { if j + d < n { let next = current.clone() + self.0[j + d].clone(); if pred(j + d, &next) { current = next; j += d; } } } (j, current) } } impl<T: Monoid> From<Vec<T>> for FenwickTree<T> { fn from(src: Vec<T>) -> Self { let mut table = std::iter::once(T::zero()) .chain(src.into_iter()) .collect::<Vec<T>>(); let n = table.len(); (1..n) .map(|i| (i, i + Self::lsb(i))) .filter(|&(_, j)| j < n) .for_each(|(i, j)| { table[j] = table[j].clone() + table[i].clone(); }); Self(table) } } impl<T: Group> FenwickTree<T> { pub fn sum<R: RangeBounds<usize>>(&self, rng: R) -> T { let Range { start, end } = bounds_within(rng, self.0.len() - 1); self.prefix_sum(end) + -self.prefix_sum(start) } } // ------------ FenwickTree with generics end ------------ // ------------ algebraic traits start ------------ use std::marker::Sized; use std::ops::*; /// 元 pub trait Element: Sized + Clone + PartialEq {} impl<T: Sized + Clone + PartialEq> Element for T {} /// 結合性 pub trait Associative: Magma {} /// マグマ pub trait Magma: Element + Add<Output=Self> {} impl<T: Element + Add<Output=Self>> Magma for T {} /// 半群 pub trait SemiGroup: Magma + Associative {} impl<T: Magma + Associative> SemiGroup for T {} /// モノイド pub trait Monoid: SemiGroup + Zero {} impl<T: SemiGroup + Zero> Monoid for T {} pub trait ComMonoid: Monoid + AddAssign {} impl<T: Monoid + AddAssign> ComMonoid for T {} /// 群 pub trait Group: Monoid + Neg<Output=Self> {} impl<T: Monoid + Neg<Output=Self>> Group for T {} pub trait ComGroup: Group + ComMonoid {} impl<T: Group + ComMonoid> ComGroup for T {} /// 半環 pub trait SemiRing: ComMonoid + Mul<Output=Self> + One {} impl<T: ComMonoid + Mul<Output=Self> + One> SemiRing for T {} /// 環 pub trait Ring: ComGroup + SemiRing {} impl<T: ComGroup + SemiRing> Ring for T {} pub trait ComRing: Ring + MulAssign {} impl<T: Ring + MulAssign> ComRing for T {} /// 体 pub trait Field: ComRing + Div<Output=Self> + DivAssign {} impl<T: ComRing + Div<Output=Self> + DivAssign> Field for T {} /// 加法単元 pub trait Zero: Element { fn zero() -> Self; fn is_zero(&self) -> bool { *self == Self::zero() } } /// 乗法単元 pub trait One: Element { fn one() -> Self; fn is_one(&self) -> bool { *self == Self::one() } } macro_rules! impl_integer { ($($T:ty,)*) => { $( impl Associative for $T {} impl Zero for $T { fn zero() -> Self { 0 } fn is_zero(&self) -> bool { *self == 0 } } impl<'a> Zero for &'a $T { fn zero() -> Self { &0 } fn is_zero(&self) -> bool { *self == &0 } } impl One for $T { fn one() -> Self { 1 } fn is_one(&self) -> bool { *self == 1 } } impl<'a> One for &'a $T { fn one() -> Self { &1 } fn is_one(&self) -> bool { *self == &1 } } )* }; } impl_integer! { i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize, } // ------------ algebraic traits end ------------ use std::ops::Bound::{Excluded, Included, Unbounded}; use std::ops::{Range, RangeBounds}; /// 区間を配列サイズに収まるように丸める。 /// /// 与えられた区間 `r` と `0..len` の共通部分を、有界な半開区間として返す。 /// /// # Examples /// ``` /// use bibliotheca::utils::bounds::bounds_within; /// /// assert_eq!(bounds_within(.., 7), 0..7); /// assert_eq!(bounds_within(..=4, 7), 0..5); /// ``` pub fn bounds_within<R: RangeBounds<usize>>(r: R, len: usize) -> Range<usize> { let e_ex = match r.end_bound() { Included(&e) => e + 1, Excluded(&e) => e, Unbounded => len, } .min(len); let s_in = match r.start_bound() { Included(&s) => s, Excluded(&s) => s + 1, Unbounded => 0, } .min(e_ex); s_in..e_ex } // ------------ io module start ------------ use std::io::{stdout, BufWriter, Read, StdoutLock, Write}; pub struct IO { iter: std::str::SplitAsciiWhitespace<'static>, buf: BufWriter<StdoutLock<'static>>, } impl IO { pub fn new() -> Self { let mut input = String::new(); std::io::stdin().read_to_string(&mut input).unwrap(); let input = Box::leak(input.into_boxed_str()); let out = Box::new(stdout()); IO { iter: input.split_ascii_whitespace(), buf: BufWriter::new(Box::leak(out).lock()), } } fn scan_str(&mut self) -> &'static str { self.iter.next().unwrap() } pub fn scan<T: Scan>(&mut self) -> <T as Scan>::Output { <T as Scan>::scan(self) } pub fn scan_vec<T: Scan>(&mut self, n: usize) -> Vec<<T as Scan>::Output> { (0..n).map(|_| self.scan::<T>()).collect() } pub fn print<T: Print>(&mut self, x: T) { <T as Print>::print(self, x); } pub fn println<T: Print>(&mut self, x: T) { self.print(x); self.print("\n"); } pub fn iterln<T: Print, I: Iterator<Item = T>>(&mut self, mut iter: I, delim: &str) { if let Some(v) = iter.next() { self.print(v); for v in iter { self.print(delim); self.print(v); } } self.print("\n"); } pub fn flush(&mut self) { self.buf.flush().unwrap(); } } impl Default for IO { fn default() -> Self { Self::new() } } pub trait Scan { type Output; fn scan(io: &mut IO) -> Self::Output; } macro_rules! impl_scan { ($($t:tt),*) => { $( impl Scan for $t { type Output = Self; fn scan(s: &mut IO) -> Self::Output { s.scan_str().parse().unwrap() } } )* }; } impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String, f32, f64); impl Scan for char { type Output = char; fn scan(s: &mut IO) -> Self::Output { s.scan_str().chars().next().unwrap() } } pub enum Bytes {} impl Scan for Bytes { type Output = &'static [u8]; fn scan(s: &mut IO) -> Self::Output { s.scan_str().as_bytes() } } pub enum Chars {} impl Scan for Chars { type Output = Vec<char>; fn scan(s: &mut IO) -> Self::Output { s.scan_str().chars().collect() } } pub enum Usize1 {} impl Scan for Usize1 { type Output = usize; fn scan(s: &mut IO) -> Self::Output { s.scan::<usize>().wrapping_sub(1) } } impl<T: Scan, U: Scan> Scan for (T, U) { type Output = (T::Output, U::Output); fn scan(s: &mut IO) -> Self::Output { (T::scan(s), U::scan(s)) } } impl<T: Scan, U: Scan, V: Scan> Scan for (T, U, V) { type Output = (T::Output, U::Output, V::Output); fn scan(s: &mut IO) -> Self::Output { (T::scan(s), U::scan(s), V::scan(s)) } } impl<T: Scan, U: Scan, V: Scan, W: Scan> Scan for (T, U, V, W) { type Output = (T::Output, U::Output, V::Output, W::Output); fn scan(s: &mut IO) -> Self::Output { (T::scan(s), U::scan(s), V::scan(s), W::scan(s)) } } pub trait Print { fn print(w: &mut IO, x: Self); } macro_rules! impl_print_int { ($($t:ty),*) => { $( impl Print for $t { fn print(w: &mut IO, x: Self) { w.buf.write_all(x.to_string().as_bytes()).unwrap(); } } )* }; } impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64); impl Print for u8 { fn print(w: &mut IO, x: Self) { w.buf.write_all(&[x]).unwrap(); } } impl Print for &[u8] { fn print(w: &mut IO, x: Self) { w.buf.write_all(x).unwrap(); } } impl Print for &str { fn print(w: &mut IO, x: Self) { w.print(x.as_bytes()); } } impl Print for String { fn print(w: &mut IO, x: Self) { w.print(x.as_bytes()); } } impl<T: Print, U: Print> Print for (T, U) { fn print(w: &mut IO, (x, y): Self) { w.print(x); w.print(" "); w.print(y); } } impl<T: Print, U: Print, V: Print> Print for (T, U, V) { fn print(w: &mut IO, (x, y, z): Self) { w.print(x); w.print(" "); w.print(y); w.print(" "); w.print(z); } } mod neboccoio_macro { #[macro_export] macro_rules! input { (@start $io:tt @read @rest) => {}; (@start $io:tt @read @rest, $($rest: tt)*) => { input!(@start $io @read @rest $($rest)*) }; (@start $io:tt @read @rest mut $($rest:tt)*) => { input!(@start $io @read @mut [mut] @rest $($rest)*) }; (@start $io:tt @read @rest $($rest:tt)*) => { input!(@start $io @read @mut [] @rest $($rest)*) }; (@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [[$kind:tt; $len1:expr]; $len2:expr] $($rest:tt)*) => { let $($mut)* $var = (0..$len2).map(|_| $io.scan_vec::<$kind>($len1)).collect::<Vec<Vec<$kind>>>(); input!(@start $io @read @rest $($rest)*) }; (@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => { let $($mut)* $var = $io.scan_vec::<$kind>($len); input!(@start $io @read @rest $($rest)*) }; (@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => { let $($mut)* $var = $io.scan::<$kind>(); input!(@start $io @read @rest $($rest)*) }; (from $io:tt $($rest:tt)*) => { input!(@start $io @read @rest $($rest)*) }; } } // ------------ io module end ------------