結果

問題 No.762 PDCAパス
ユーザー tanimani364tanimani364
提出日時 2021-03-24 15:49:40
言語 C++17(clang)
(17.0.6 + boost 1.87.0)
結果
AC  
実行時間 34 ms / 2,000 ms
コード長 3,693 bytes
コンパイル時間 2,037 ms
コンパイル使用メモリ 165,620 KB
実行使用メモリ 9,216 KB
最終ジャッジ日時 2024-11-26 23:13:15
合計ジャッジ時間 4,399 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 1 ms
5,248 KB
testcase_06 AC 1 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 1 ms
5,248 KB
testcase_09 AC 1 ms
5,248 KB
testcase_10 AC 1 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 1 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 1 ms
5,248 KB
testcase_15 AC 2 ms
5,248 KB
testcase_16 AC 1 ms
5,248 KB
testcase_17 AC 1 ms
5,248 KB
testcase_18 AC 1 ms
5,248 KB
testcase_19 AC 1 ms
5,248 KB
testcase_20 AC 1 ms
5,248 KB
testcase_21 AC 2 ms
5,248 KB
testcase_22 AC 17 ms
5,248 KB
testcase_23 AC 15 ms
5,248 KB
testcase_24 AC 27 ms
9,216 KB
testcase_25 AC 25 ms
9,088 KB
testcase_26 AC 16 ms
5,248 KB
testcase_27 AC 15 ms
5,248 KB
testcase_28 AC 34 ms
8,704 KB
testcase_29 AC 34 ms
8,832 KB
testcase_30 AC 33 ms
7,680 KB
testcase_31 AC 32 ms
7,680 KB
testcase_32 AC 32 ms
7,680 KB
testcase_33 AC 33 ms
6,784 KB
testcase_34 AC 32 ms
6,784 KB
testcase_35 AC 31 ms
6,784 KB
testcase_36 AC 26 ms
5,248 KB
testcase_37 AC 24 ms
5,248 KB
testcase_38 AC 26 ms
5,248 KB
testcase_39 AC 26 ms
5,248 KB
testcase_40 AC 27 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
//#include<boost/multiprecision/cpp_int.hpp>
//#include<boost/multiprecision/cpp_dec_float.hpp>
//#include <atcoder/all>
#define rep(i, a) for (int i = (int)0; i < (int)a; ++i)
#define rrep(i, a) for (int i = (int)a - 1; i >= 0; --i)
#define REP(i, a, b) for (int i = (int)a; i < (int)b; ++i)
#define RREP(i, a, b) for (int i = (int)a - 1; i >= b; --i)
#define repl(i, a) for (ll i = (ll)0; i < (ll)a; ++i)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define popcount __builtin_popcount
#define fi first
#define se second
using ll = long long;
constexpr ll mod = 1e9 + 7;
constexpr ll mod_998244353 = 998244353;
constexpr ll INF = 1LL << 60;

// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")

//using lll=boost::multiprecision::cpp_int;
//using Double=boost::multiprecision::number<boost::multiprecision::cpp_dec_float<1024>>;//仮数部が1024桁
template <class T>
inline bool chmin(T &a, T b)
{
	if (a > b)
	{
		a = b;
		return true;
	}
	return false;
}
template <class T>
inline bool chmax(T &a, T b)
{
	if (a < b)
	{
		a = b;
		return true;
	}
	return false;
}

template <typename T>
T mypow(T x, T n, const T &p = -1)
{ //x^nをmodで割った余り

	if (p != -1)
	{
		x %= p;
	}
	T ret = 1;
	while (n > 0)
	{
		if (n & 1)
		{
			if (p != -1)
				ret = (ret * x) % p;
			else
				ret *= x;
		}
		if (p != -1)
			x = (x * x) % p;
		else
			x *= x;
		n >>= 1;
	}
	return ret;
}

using namespace std;
//using namespace atcoder;

template<int mod>
struct Modint{
    int x;
    Modint():x(0){}
    Modint(int64_t y):x((y%mod+mod)%mod){}

    Modint &operator+=(const Modint &p){
			if((x+=p.x)>=mod)
				x -= mod;
			return *this;
		}

		Modint &operator-=(const Modint &p){
			if((x+=mod-p.x)>=mod)
				x -= mod;
			return *this;
		}

		Modint &operator*=(const Modint &p){
			x = (1LL * x * p.x) % mod;
			return *this;
		}

		Modint &operator/=(const Modint &p){
			*this *= p.inverse();
			return *this;
		}

		Modint operator-() const { return Modint(-x); }
		Modint operator+(const Modint &p) const{
			return Modint(*this) += p;
		}
		Modint operator-(const Modint &p) const{
			return Modint(*this) -= p;
		}
		Modint operator*(const Modint &p) const{
			return Modint(*this) *= p;
		}
		Modint operator/(const Modint &p) const{
			return Modint(*this) /= p;
		}

		bool operator==(const Modint &p) const { return x == p.x; }
		bool operator!=(const Modint &p) const{return x != p.x;}

		Modint inverse() const{//非再帰拡張ユークリッド
			int a = x, b = mod, u = 1, v = 0;
			while(b>0){
				int t = a / b;
				swap(a -= t * b, b);
				swap(u -= t * v, v);
			}
			return Modint(u);
		}

		Modint pow(int64_t n) const{//繰り返し二乗法
			Modint ret(1), mul(x);
			while(n>0){
				if(n&1)
					ret *= mul;
				mul *= mul;
				n >>= 1;
			}
			return ret;
		}

		friend ostream &operator<<(ostream &os,const Modint &p){
			return os << p.x;
		}
};

using modint = Modint<mod>;

void solve()
{
	int n,m;
	cin>>n>>m;
	vector<vector<int>>g(n);
	string s;
	cin>>s;
	rep(i,m){
		int u,v;
		cin>>u>>v;
		u--;v--;
		g[u].eb(v);
		g[v].eb(u);
	}
	vector<modint>cnt(n);
	rep(i,n){
		if(s[i]=='C'){
			for(auto x:g[i]){
				if(s[x]=='A')cnt[i]+=1;
			}
		}
	}
	rep(i,n){
		if(s[i]=='D'){
			for(auto x:g[i]){
				if(s[x]=='C'){
					cnt[i]+=cnt[x];
				}
			}
		}
	}
	modint ans=0;
	rep(i,n){
		if(s[i]=='P'){
			for(auto x:g[i]){
				if(s[x]=='D'){
					ans+=cnt[x];
				}
			}
		}
	}
	cout<<ans<<"\n";
}

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	cout << fixed << setprecision(15);
	solve();
	return 0;
}
0