結果

問題 No.1442 I-wate Shortest Path Problem
ユーザー hitonanodehitonanode
提出日時 2021-03-26 21:46:51
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 821 ms / 3,000 ms
コード長 10,543 bytes
コンパイル時間 2,919 ms
コンパイル使用メモリ 237,796 KB
実行使用メモリ 39,684 KB
最終ジャッジ日時 2024-05-06 15:11:27
合計ジャッジ時間 11,455 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 7 ms
5,376 KB
testcase_03 AC 39 ms
5,376 KB
testcase_04 AC 7 ms
5,376 KB
testcase_05 AC 5 ms
5,376 KB
testcase_06 AC 35 ms
5,376 KB
testcase_07 AC 6 ms
5,376 KB
testcase_08 AC 33 ms
5,376 KB
testcase_09 AC 12 ms
5,376 KB
testcase_10 AC 40 ms
5,376 KB
testcase_11 AC 39 ms
5,376 KB
testcase_12 AC 308 ms
34,640 KB
testcase_13 AC 157 ms
25,564 KB
testcase_14 AC 229 ms
31,504 KB
testcase_15 AC 214 ms
28,960 KB
testcase_16 AC 302 ms
31,484 KB
testcase_17 AC 483 ms
35,636 KB
testcase_18 AC 502 ms
35,640 KB
testcase_19 AC 520 ms
34,140 KB
testcase_20 AC 821 ms
35,660 KB
testcase_21 AC 710 ms
35,756 KB
testcase_22 AC 152 ms
30,048 KB
testcase_23 AC 371 ms
39,684 KB
testcase_24 AC 136 ms
25,788 KB
testcase_25 AC 330 ms
35,704 KB
testcase_26 AC 144 ms
31,604 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#else
#define dbg(x) (x)
#endif

template <typename T, T INF = std::numeric_limits<T>::max() / 2, int INVALID = -1> struct ShortestPath {
    int V, E;
    bool single_positive_weight;
    T wmin, wmax;
    std::vector<std::vector<std::pair<int, T>>> to;

    ShortestPath(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0), to(V) {}
    void add_edge(int s, int t, T w) {
        assert(0 <= s and s < V);
        assert(0 <= t and t < V);
        to[s].emplace_back(t, w);
        E++;
        if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false;
        wmin = std::min(wmin, w);
        wmax = std::max(wmax, w);
    }

    std::vector<T> dist;
    std::vector<int> prev;

    // Dijkstra algorithm
    // Complexity: O(E log E)
    void Dijkstra(int s) {
        assert(0 <= s and s < V);
        dist.assign(V, INF);
        dist[s] = 0;
        prev.assign(V, INVALID);
        using P = std::pair<T, int>;
        std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
        pq.emplace(0, s);
        while (!pq.empty()) {
            T d;
            int v;
            std::tie(d, v) = pq.top();
            pq.pop();
            if (dist[v] < d) continue;
            for (auto nx : to[v]) {
                T dnx = d + nx.second;
                if (dist[nx.first] > dnx) {
                    dist[nx.first] = dnx, prev[nx.first] = v;
                    pq.emplace(dnx, nx.first);
                }
            }
        }
    }

    // Bellman-Ford algorithm
    // Complexity: O(VE)
    bool BellmanFord(int s, int nb_loop) {
        assert(0 <= s and s < V);
        dist.assign(V, INF), prev.assign(V, INVALID);
        dist[s] = 0;
        for (int l = 0; l < nb_loop; l++) {
            bool upd = false;
            for (int v = 0; v < V; v++) {
                if (dist[v] == INF) continue;
                for (auto nx : to[v]) {
                    T dnx = dist[v] + nx.second;
                    if (dist[nx.first] > dnx) dist[nx.first] = dnx, prev[nx.first] = v, upd = true;
                }
            }
            if (!upd) return true;
        }
        return false;
    }
};

// lowest common ancestor (LCA) class for undirected weighted tree
// 無向重み付きグラフの最小共通祖先
// <https://yukicoder.me/submissions/392383>
struct UndirectedWeightedTree {
    using T = long long; // Arbitrary data structure (operator+, operator- must be defined)
    int INVALID = -1;
    int V, lgV;
    int E;
    int root;
    std::vector<std::vector<std::pair<int, int>>> adj; // (nxt_vertex, edge_id)
    // vector<pint> edge; // edges[edge_id] = (vertex_id, vertex_id)
    std::vector<T> weight;     // w[edge_id]
    std::vector<int> par;      // parent_vertex_id[vertex_id]
    std::vector<int> depth;    // depth_from_root[vertex_id]
    std::vector<T> acc_weight; // w_sum_from_root[vertex_id]

    void _fix_root_dfs(int now, int prv, int prv_edge_id) {
        par[now] = prv;
        if (prv_edge_id != INVALID) acc_weight[now] = acc_weight[prv] + weight[prv_edge_id];
        for (auto nxt : adj[now])
            if (nxt.first != prv) {
                depth[nxt.first] = depth[now] + 1;
                _fix_root_dfs(nxt.first, now, nxt.second);
            }
    }

    UndirectedWeightedTree() = default;
    UndirectedWeightedTree(int N) : V(N), E(0), adj(N) {
        lgV = 1;
        while (1 << lgV < V) lgV++;
    }

    void add_edge(int u, int v, T w) {
        adj[u].emplace_back(v, E);
        adj[v].emplace_back(u, E);
        // edge.emplace_back(u, v);
        weight.emplace_back(w);
        E++;
    }

    void fix_root(int r) {
        root = r;
        par.resize(V);
        depth.resize(V);
        depth[r] = 0;
        acc_weight.resize(V);
        acc_weight[r] = 0;
        _fix_root_dfs(root, INVALID, INVALID);
    }

    std::vector<std::vector<int>> doubling;
    void doubling_precalc() {
        doubling.assign(lgV, std::vector<int>(V));
        doubling[0] = par;
        for (int d = 0; d < lgV - 1; d++)
            for (int i = 0; i < V; i++) {
                if (doubling[d][i] == INVALID)
                    doubling[d + 1][i] = INVALID;
                else
                    doubling[d + 1][i] = doubling[d][doubling[d][i]];
            }
    }

    int kth_parent(int x, int k) {
        if (depth[x] < k) return INVALID;
        for (int d = 0; d < lgV; d++) {
            if (x == INVALID) return INVALID;
            if (k & (1 << d)) x = doubling[d][x];
        }
        return x;
    }

    int lowest_common_ancestor(int u, int v) {
        if (depth[u] > depth[v]) std::swap(u, v);

        v = kth_parent(v, depth[v] - depth[u]);
        if (u == v) return u;
        for (int d = lgV - 1; d >= 0; d--) {
            if (doubling[d][u] != doubling[d][v]) u = doubling[d][u], v = doubling[d][v];
        }
        return par[u];
    }

    T path_length(int u, int v) {
        // Not distance, but the sum of weights
        int r = lowest_common_ancestor(u, v);
        return (acc_weight[u] - acc_weight[r]) + (acc_weight[v] - acc_weight[r]);
    }
};



int main() {
    int N, K;
    cin >> N >> K;
    UndirectedWeightedTree tree(N);
    ShortestPath<lint> graph(N + K);
    REP(i, N - 1) {
        int a, b, c;
        cin >> a >> b >> c;
        a--, b--;
        graph.add_edge(a, b, c);
        graph.add_edge(b, a, c);
        tree.add_edge(a, b, c);
    }
    tree.fix_root(0);
    tree.doubling_precalc();

    vector<int> P;
    vector<vector<lint>> ds;
    REP(k, K) {
        int m, p;
        cin >> m >> p;

        while (m--) {
            int x;
            cin >> x;
            x--;
            graph.add_edge(N + k, x, 0);
            graph.add_edge(x, N + k, p);
        }
        P.push_back(p);
    }

    REP(k, K) {
        graph.Dijkstra(N + k);
        ds.push_back(graph.dist);
    }

    vector<vector<lint>> ddd(K, vector<lint>(K));
    REP(i, K) REP(j, K) ddd[i][j] = ds[i][N + j];

    REP(_, 3) REP(i, K) REP(j, K) REP(k, K) chmin(ddd[j][k], ddd[j][i] + ddd[i][k]);

    int Q;
    cin >> Q;
    while (Q--) {
        int u, v;
        cin >> u >> v;
        u--, v--;
        lint ret = tree.path_length(u, v);
        REP(i, K) chmin(ret, ds[i][u] + ds[i][v] + P[i]);
        REP(i, K) REP(j, K) {
            chmin(ret, ds[i][u] + ds[j][v] + ddd[i][j] + P[i]);
        }
        cout << ret << '\n';
    }
}
0