結果
| 問題 |
No.1442 I-wate Shortest Path Problem
|
| コンテスト | |
| ユーザー |
saxofone111
|
| 提出日時 | 2021-03-26 22:36:50 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 735 ms / 3,000 ms |
| コード長 | 5,943 bytes |
| コンパイル時間 | 2,138 ms |
| コンパイル使用メモリ | 212,924 KB |
| 最終ジャッジ日時 | 2025-01-19 23:07:52 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 25 |
ソースコード
#include "bits/stdc++.h"
#define MOD 1000000007
#define rep(i, n) for(ll i=0; i < (n); i++)
#define rrep(i, n) for(ll i=(n)-1; i >=0; i--)
#define ALL(v) v.begin(),v.end()
#define rALL(v) v.rbegin(),v.rend()
#define FOR(i, j, k) for(ll i=j;i<k;i++)
#define debug_print(var) cerr << #var << "=" << var <<endl;
#define DUMP(i, v)for(ll i=0;i<v.size();i++)cerr<<v[i]<<" "
#define fi first
#define se second
using namespace std;
typedef long long int ll;
typedef vector<ll> llvec;
typedef vector<double> dvec;
typedef pair<ll, ll> P;
typedef long double ld;
struct edge{ll x, c;};
struct dijkstra{
ll N;
llvec d;
vector<vector<edge>> e;
dijkstra(ll n){
N = n;
//d = llvec(N, 1e18);
e = vector<vector<edge>>(N);
}
void add_edge(ll from, ll to, ll cost){
e[from].push_back({to, cost});
}
void run(ll start){
priority_queue<P, vector<P>, greater<P>> que;
que.push({0, start});
d = llvec(N, 1e18);
d[start]=0;
while(!que.empty()){
P q = que.top();que.pop();
ll dc = q.first;
ll x = q.second;
if(dc>d[x]){
continue;
}else{
for(auto ip: e[x]){
if(d[ip.x]<=d[x]+ip.c){
continue;
}else{
d[ip.x]= d[x]+ip.c;
que.push({d[ip.x], ip.x});
}
}
}
}
}
};
/*
struct segment_tree{
ll N;
llvec v;
ll init=5e18;//initial value
ll f(ll a, ll b){ //function
return min(a, b);
}
segment_tree(ll n){
N=1;
while(N<n){
N*=2;
}
v = llvec(2*N-1, init);
}
void set(ll i, ll val){
i += N-1;
v[i] = val;
while(i>0){
i = (i-1)/2;
v[i] = f(v[i*2+1], v[i*2+2]);
}
}
void add(ll i, ll val){
i += N-1;
v[i] += val;
while(i>0){
i = (i-1)/2;
v[i] = f(v[i*2+1], v[i*2+2]);
}
}
ll get(ll L, ll R){// L <= i < R
L += N-1;
R += N-1;
ll vl = init;
ll vr = init;
while(L<R){
if(L%2==0){
vl = f(vl, v[L]);
L++;
}
if(R%2==0){
vr = f(vr, v[R-1]);
R--;
}
R=(R-1)/2;
L=(L-1)/2;
}
return f(vl, vr);
}
ll operator[](ll i){
return v[i+N-1];
}
};*/
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
segtree() : segtree(0) {}
segtree(int n) : segtree(std::vector<S>(n, e())) {}
segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
return d[p + size];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
template <bool (*f)(S)> int max_right(int l) {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)> int min_left(int r) {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};
using S = ll;
S op(S a, S b){
return min(a, b);
}
S ed(){
return 1e18;
}
//segtree<S, op, e> sg(vector<S> a)
vector<S> s;
vector<ll> in;
vector<vector<edge>> e;
void dfs(ll from, ll to, ll c){
in[to] = s.size();
s.push_back(c);
for(auto ie: e[to]){
if(ie.x==from)continue;
dfs(to, ie.x, c+ie.c);
s.push_back(c);
}
return;
}
/**************************************
** A main function starts from here **
***************************************/
int main(){
ll N, K;
cin >> N >> K;
dijkstra dijk(N+K);
e = vector<vector<edge>>(N);
rep(i, N-1){
ll a, b, c;
cin >> a >> b >> c;
a--;b--;
e[a].push_back({b, c});
e[b].push_back({a, c});
dijk.add_edge(a, b, c);
dijk.add_edge(b, a, c);
}
in = llvec(N, 0);
dfs(-1, 0, 0);
segtree<S, op, ed> sg(s);
llvec p;
rep(i, K){
ll M, dd;
cin >> M >> dd;
rep(j, M){
ll x;
cin >> x;
x--;
dijk.add_edge(N+i, x, dd);
dijk.add_edge(x, N+i, 0);
}
p.push_back(dd);
}
vector<llvec> d(K);
rep(i, K){
dijk.run(N+i);
d[i] = dijk.d;
}
ll Q;
cin >> Q;
while(Q--){
ll u, v;
cin >> u >> v;
u--;v--;
ll from = min(in[u], in[v]);
ll to = max(in[u], in[v])+1;
ll ans = s[in[u]] + s[in[v]] - 2*sg.prod(from, to);
rep(i, K){
ans = min(ans, d[i][u] + d[i][v]-p[i]);
}
cout << ans << endl;
}
return 0;
}
saxofone111