結果
| 問題 |
No.1442 I-wate Shortest Path Problem
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-03-26 22:43:56 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 4,026 bytes |
| コンパイル時間 | 354 ms |
| コンパイル使用メモリ | 82,116 KB |
| 実行使用メモリ | 299,468 KB |
| 最終ジャッジ日時 | 2024-11-29 00:39:37 |
| 合計ジャッジ時間 | 36,064 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 21 TLE * 4 |
ソースコード
class Dijkstra():
class Edge():
def __init__(self, _to, _cost):
self.to = _to
self.cost = _cost
def __init__(self, V):
self.G = [[] for i in range(V)]
self._E = 0
self._V = V
@property
def E(self):
return self._E
@property
def V(self):
return self._V
def add_edge(self, _from, _to, _cost):
self.G[_from].append(self.Edge(_to, _cost))
self._E += 1
def shortest_path(self, start):
import heapq
que = []
d = [10**15] * self.V
if type(start)==int:
s = start
d[s] = 0
heapq.heappush(que, (0, s))
else:
for s in start:
d[s] = 0
heapq.heappush(que,(0,s))
while len(que) != 0:
cost, v = heapq.heappop(que)
if d[v] < cost: continue
for i in range(len(self.G[v])):
e = self.G[v][i]
if d[e.to] > d[v] + e.cost:
d[e.to] = d[v] + e.cost
heapq.heappush(que, (d[e.to], e.to))
return d
import sys,random,bisect
from collections import deque,defaultdict
from heapq import heapify,heappop,heappush
from itertools import permutations
from math import gcd
sys.setrecursionlimit(2*10**5)
input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())
N,K = mi()
edge = [[] for i in range(N)]
tree = Dijkstra(N)
for _ in range(N-1):
a,b,c = mi()
edge[a-1].append((b-1,c))
edge[b-1].append((a-1,c))
tree.add_edge(a-1,b-1,c)
tree.add_edge(b-1,a-1,c)
air = []
air_city = []
for _ in range(K):
m,p = mi()
air.append((m,p))
air_city.append([int(a)-1 for a in input().split()])
dist_from_air = [[10**17 for i in range(N)] for a in range(K)]
for a in range(K):
dist_from_air[a] = tree.shortest_path(air_city[a])
airs = Dijkstra(K)
for i in range(K):
for j in range(K):
tmp = 10**17
for _from in air_city[i]:
tmp = min(dist_from_air[j][_from],tmp)
tmp += air[j][1]
airs.add_edge(i,j,tmp)
dist = [airs.shortest_path(i) for i in range(K)]
# N: 頂点数
# G[v]: 頂点vの子頂点 (親頂点は含まない)
parent = [-1 for i in range(N)]
deq = deque([0])
while deq:
v = deq.popleft()
for nv,c in edge[v]:
if parent[nv]==-1 and nv!=0:
parent[nv] = v
deq.append(nv)
G = [[(nv,c) for nv,c in edge[v] if nv!=parent[v]] for v in range(N)]
# Euler Tour の構築
S = []
F = [0]*N
depth = [0]*N
depth_dist = [0]*N
def dfs(v, d, di):
F[v] = len(S)
depth[v] = d
depth_dist[v] = di
S.append(v)
for nv,c in G[v]:
dfs(nv, d+1, di+c)
S.append(v)
dfs(0, 0, 0)
# 存在しない範囲は深さが他よりも大きくなるようにする
INF = (N, None)
# LCAを計算するクエリの前計算
M = 2*N
M0 = 2**(M-1).bit_length()
data = [INF]*(2*M0)
for i, v in enumerate(S):
data[M0-1+i] = (depth[v], i)
for i in range(M0-2, -1, -1):
data[i] = min(data[2*i+1], data[2*i+2])
# LCAの計算 (generatorで最小値を求める)
def _query(a, b):
res = INF
a += M0; b += M0
while a < b:
if b & 1:
b -= 1
res = min(res,data[b-1])
if a & 1:
res = min(res,data[a-1])
a += 1
a >>= 1; b >>= 1
return res
# LCAの計算 (外から呼び出す関数)
def lca(u, v):
fu = F[u]; fv = F[v]
if fu > fv:
fu, fv = fv, fu
idx = _query(fu,fv+1)
return S[idx[1]]
def dist_in_tree(u,v):
w = lca(u,v)
return depth_dist[u] + depth_dist[v] - 2 * depth_dist[w]
ans = []
for _ in range(int(input())):
u,v = mi()
u,v = u-1,v-1
res = dist_in_tree(u,v)
for i in range(K):
for j in range(K):
tmp = dist_from_air[i][u] + air[i][1] + dist[i][j] + dist_from_air[j][v]
res = min(res,tmp)
ans.append(res)
print(*ans,sep="\n")