結果

問題 No.1441 MErGe
ユーザー phocomphocom
提出日時 2021-03-26 23:26:54
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 15,640 bytes
コンパイル時間 2,095 ms
コンパイル使用メモリ 142,872 KB
実行使用メモリ 23,720 KB
最終ジャッジ日時 2024-11-29 01:44:01
合計ジャッジ時間 25,500 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 7 ms
5,248 KB
testcase_04 AC 8 ms
5,248 KB
testcase_05 AC 26 ms
5,248 KB
testcase_06 AC 26 ms
5,248 KB
testcase_07 AC 27 ms
5,248 KB
testcase_08 AC 277 ms
8,192 KB
testcase_09 AC 283 ms
8,188 KB
testcase_10 AC 505 ms
9,984 KB
testcase_11 AC 464 ms
9,324 KB
testcase_12 AC 507 ms
10,116 KB
testcase_13 TLE -
testcase_14 TLE -
testcase_15 TLE -
testcase_16 TLE -
testcase_17 TLE -
testcase_18 AC 749 ms
17,860 KB
testcase_19 AC 850 ms
20,072 KB
testcase_20 AC 672 ms
16,896 KB
testcase_21 AC 603 ms
15,232 KB
testcase_22 AC 902 ms
18,176 KB
testcase_23 TLE -
testcase_24 TLE -
testcase_25 TLE -
testcase_26 TLE -
testcase_27 TLE -
testcase_28 TLE -
testcase_29 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <bitset>
#include <cassert>
#include <cmath>
#include <complex>
#include <cstdio>
#include <deque>
#include <functional>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#define REP(i, N) for (int i = 0; i < (int)N; i++)
#define FOR(i, a, b) for (int i = a; i < (int)b; i++)
#define ALL(x) (x).begin(), (x).end()
#pragma GCC optimize("Ofast")
#pragma GCC target("avx,avx2")

using namespace std;

constexpr int inf = 1 << 30;
constexpr long long llinf = 1LL << 62;
constexpr int mod = 1000000007;  // 998244353;
constexpr int dy[4] = {-1, 0, 1, 0}, dx[4] = {0, -1, 0, 1};

using ll = long long;
using Pii = pair<int, int>;
using Pll = pair<ll, ll>;

inline int popcount(ll x) { return __builtin_popcountll(x); }
inline int div2num(ll x) { return __builtin_ctzll(x); }
inline bool bit(ll x, int b) { return (x >> b) & 1; }

template <class T>
bool chmax(T &a, const T &b) {
  if (a < b) {
    a = b;
    return 1;
  }
  return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
  if (b < a) {
    a = b;
    return 1;
  }
  return 0;
}

template <class T>
string to_string(T s);
template <class S, class T>
string to_string(pair<S, T> p);
string to_string(char c) { return string(1, c); }
string to_string(string s) { return s; }
string to_string(const char s[]) { return string(s); }

template <class T>
string to_string(T v) {
  if (v.empty()) return "{}";
  string ret = "{";
  for (auto x : v) ret += to_string(x) + ",";
  ret.back() = '}';
  return ret;
}

template <class S, class T>
string to_string(pair<S, T> p) {
  return "{" + to_string(p.first) + ":" + to_string(p.second) + "}";
}
void debug() { cerr << endl; }

template <class Head, class... Tail>
void debug(Head head, Tail... tail) {
  cerr << to_string(head) << " ";
  debug(tail...);
}

template <class T>
vector<T> makev(int n, T v) {
  return vector<T>(n, v);
}

struct IO {
#ifdef _WIN32
  inline char getchar_unlocked() { return getchar(); }
  inline void putchar_unlocked(char c) { putchar(c); }
#endif
  std::string separator = " ";
  template <class T>
  inline void read(T &x) {
    char c;
    do {
      c = getchar_unlocked();
    } while (c != '-' && (c < '0' || '9' < c));
    bool minus = 0;
    if (c == '-') {
      minus = 1;
      c = getchar_unlocked();
    }
    x = 0;
    while ('0' <= c && c <= '9') {
      x *= 10;
      x += c - '0';
      c = getchar_unlocked();
    }
    if (minus) x = -x;
  }
  inline void read(std::string &x) {
    char c;
    do {
      c = getchar_unlocked();
    } while (c == ' ' || c == '\n');
    x.clear();
    do {
      x += c;
      c = getchar_unlocked();
    } while (c != ' ' && c != '\n' && c != EOF);
  }
  template <class T>
  inline void read(std::vector<T> &v) {
    for (auto &x : v) read(x);
  }
  template <class S, class T>
  inline void read(std::pair<S, T> &p) {
    read(p.first);
    read(p.second);
  }
  template <class Head, class... Tail>
  inline void read(Head &head, Tail &...tail) {
    read(head);
    read(tail...);
  }
  template <class T>
  inline void write(T x) {
    char buf[32];
    int p = 0;
    if (x < 0) {
      x = -x;
      putchar_unlocked('-');
    }
    if (x == 0) putchar_unlocked('0');
    while (x > 0) {
      buf[p++] = (x % 10) + '0';
      x /= 10;
    }
    while (p) {
      putchar_unlocked(buf[--p]);
    }
  }
  inline void write(std::string x) {
    for (char c : x) putchar_unlocked(c);
  }
  inline void write(const char s[]) {
    for (int i = 0; s[i] != 0; ++i) putchar_unlocked(s[i]);
  }
  template <class T>
  inline void write(std::vector<T> v) {
    if (v.empty()) return;
    for (auto itr = v.begin(); itr + 1 != v.end(); ++itr) {
      write(*itr);
      write(separator);
    }
    write(v.back());
  }
  template <class Head, class... Tail>
  inline void write(Head head, Tail... tail) {
    write(head);
    write(separator);
    write(tail...);
  }
  template <class Head, class... Tail>
  inline void writeln(Head head, Tail... tail) {
    write(head, tail...);
    write("\n");
  }
  void set_separator(std::string s) { separator = s; }
} io;

struct Prime {
  int n;
  vector<int> table;
  vector<int> primes;
  Prime(int _n = 100000) {
    n = _n + 1;
    table.resize(n, -1);
    table[0] = 0;
    table[1] = -1;
    for (int i = 2; i * i < n; ++i) {
      if (table[i] == -1) {
        for (int j = i * i; j < n; j += i) {
          table[j] = i;
        }
      }
    }
  }
  void enumerate_primes() {
    primes.clear();
    for (int i = 2; i < n; ++i) {
      if (table[i] == -1) primes.push_back(i);
    }
  }
  vector<pair<long long, int>> prime_factor(long long x) {
    map<long long, int> mp;
    long long div = 2;
    int p = 0;
    while (n <= x && div * div <= x) {
      if (x % div == 0) {
        mp[div]++;
        x /= div;
      } else {
        if (p + 1 < primes.size()) {
          div = primes[++p];
        } else {
          div++;
        }
      }
    }
    if (x < n) {
      while (table[x] != -1) {
        mp[table[x]]++;
        x /= table[x];
      }
    }
    if (x > 1) mp[x]++;
    vector<pair<long long, int>> ret;
    for (auto p : mp) ret.push_back(p);
    return ret;
  }
};

template <int MOD = 1000000007>
struct Math {
  vector<long long> fact, factinv, inv;
  Math(int n = 100000) {
    fact.resize(n + 1);
    factinv.resize(n + 1);
    inv.resize(n + 1);
    fact[0] = fact[1] = 1;
    factinv[0] = factinv[1] = 1;
    inv[1] = 1;
    for (int i = 2; i <= n; ++i) {
      fact[i] = fact[i - 1] * i % MOD;
      inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
      factinv[i] = factinv[i - 1] * inv[i] % MOD;
    }
  }
  long long C(int n, int r) {
    if (n < r || n < 0 || r < 0) {
      return 0;
    } else {
      return fact[n] * (factinv[r] * factinv[n - r] % MOD) % MOD;
    }
  }
  long long P(int n, int r) {
    if (n < r || n < 0 || r < 0) {
      return 0;
    } else {
      return fact[n] * factinv[n - r] % MOD;
    }
  }
  long long H(int n, int r) { return C(n + r - 1, r); }
};

struct UnionFind {
  vector<int> data;
  vector<vector<int>> groups;
  UnionFind(int n) : data(n, -1) {}
  int root(int v) { return data[v] < 0 ? v : data[v] = root(data[v]); }
  bool unite(int u, int v) {
    if ((u = root(u)) == (v = root(v))) {
      return 1;
    } else {
      if (-data[u] < -data[v]) swap(u, v);
      data[u] += data[v];
      data[v] = u;
      return 0;
    }
  }
  int size(int v) { return -data[root(v)]; }
  void make_groups() {
    map<int, vector<int>> mp;
    for (int i = 0; i < data.size(); ++i) mp[root(i)].push_back(i);
    groups.clear();
    for (auto p : mp) groups.push_back(p.second);
  }
};

namespace phc {
long long modpow(long long a, long long n) {
  long long res = 1;
  while (n > 0) {
    if (n & 1) res = res * a % mod;
    a = a * a % mod;
    n >>= 1;
  }
  return res;
}
long long modinv(long long a) {
  long long b = mod, u = 1, v = 0;
  while (b) {
    long long t = a / b;
    a -= t * b;
    swap(a, b);
    u -= t * v;
    swap(u, v);
  }
  u %= mod;
  if (u < 0) u += mod;
  return u;
}
long long gcd(long long a, long long b) { return b != 0 ? gcd(b, a % b) : a; }
long long lcm(long long a, long long b) { return a / gcd(a, b) * b; }
}  // namespace phc

template <int mod>
struct ModInt {
  int x;
  ModInt() : x(0) {}
  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
  ModInt &operator+=(const ModInt &p) {
    if ((x += p.x) >= mod) x -= mod;
    return *this;
  }
  ModInt &operator-=(const ModInt &p) {
    if ((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }
  ModInt &operator*=(const ModInt &p) {
    x = (int)(1LL * x * p.x % mod);
    return *this;
  }
  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }
  ModInt operator-() const { return ModInt(-x); }
  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }
  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; }
  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt<mod>(t);
    return (is);
  }
  static int get_mod() { return mod; }
};

template <class T>
struct RangeFold {
  int n;
  vector<T> dat;
  using F = function<T(T, T)>;
  const F f;
  const T id;
  RangeFold(int _n, const F _f, const T _id) : n(1), f(_f), id(_id) {
    while (n < _n) n <<= 1;
    dat.resize(2 * n, id);
  }
  void update(int i, T x) {
    dat[i += n] = x;
    while (i >>= 1) dat[i] = f(dat[i * 2], dat[i * 2 + 1]);
  }
  T query(int l, int r) {
    T xl = id, xr = id;
    for (l += n, r += n; l < r; l >>= 1, r >>= 1) {
      if (l & 1) xl = f(xl, dat[l++]);
      if (r & 1) xr = f(dat[--r], xr);
    }
    return f(xl, xr);
  }
  T &operator[](const int i) { return dat[n + i]; }
};

template <int L>
struct KthNext {
  array<vector<int>, L> next;
  KthNext(int n, function<int(int)> f) {
    for (int i = 0; i < L; ++i) next[i].resize(n);
    for (int i = 0; i < n; ++i) next[0][i] = f(i);
    for (int i = 0; i < L - 1; ++i)
      for (int j = 0; j < n; ++j) next[i + 1][j] = next[i][next[i][j]];
  }
  int get(int x, long long k) {
    for (int i = 0; i < L; ++i)
      if ((k >> i) & 1) x = next[i][x];
    return x;
  }
};

long long inv_count(vector<int> &vec) {
  int n = vec.size();
  vector<int> bit(n + 1);
  long long ret = 0;
  for (int i = n - 1; i >= 0; --i) {
    int x = vec[i];
    while (x > 0) {
      ret += bit[x];
      x -= x & -x;
    }
    x = vec[i] + 1;
    while (x < n + 1) {
      bit[x] += 1;
      x += x & -x;
    }
  }
  return ret;
}

using modint = ModInt<mod>;

template <class Monoid, class OperatorMonoid = Monoid>
struct RandomizedBinarySearchTree {
  using F = function<Monoid(Monoid, Monoid)>;
  using G = function<Monoid(Monoid, OperatorMonoid)>;
  using H = function<OperatorMonoid(OperatorMonoid, OperatorMonoid)>;
  using P = function<OperatorMonoid(OperatorMonoid, int)>;

  inline int xor128() {
    static int x = 123456789;
    static int y = 362436069;
    static int z = 521288629;
    static int w = 88675123;
    int t;

    t = x ^ (x << 11);
    x = y;
    y = z;
    z = w;
    return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
  }

  struct Node {
    Node *l, *r;
    int cnt;
    Monoid key, sum;
    OperatorMonoid lazy;

    Node() = default;

    Node(const Monoid &k, const OperatorMonoid &p)
        : cnt(1), key(k), sum(k), lazy(p), l(nullptr), r(nullptr) {}
  };

  vector<Node> pool;
  int ptr;

  const Monoid M1;
  const OperatorMonoid OM0;
  const F f;
  const G g;
  const H h;
  const P p;

  RandomizedBinarySearchTree(int sz, const F &f, const Monoid &M1)
      : pool(sz),
        ptr(0),
        f(f),
        g(G()),
        h(H()),
        p(P()),
        M1(M1),
        OM0(OperatorMonoid()) {}

  RandomizedBinarySearchTree(int sz, const F &f, const G &g, const H &h,
                             const P &p, const Monoid &M1,
                             const OperatorMonoid &OM0)
      : pool(sz), ptr(0), f(f), g(g), h(h), p(p), M1(M1), OM0(OM0) {}

  inline Node *alloc(const Monoid &key) {
    return &(pool[ptr++] = Node(key, OM0));
  }

  virtual Node *clone(Node *t) { return t; }

  inline int count(const Node *t) { return t ? t->cnt : 0; }

  inline Monoid sum(const Node *t) { return t ? t->sum : M1; }

  inline Node *update(Node *t) {
    t->cnt = count(t->l) + count(t->r) + 1;
    t->sum = f(f(sum(t->l), t->key), sum(t->r));
    return t;
  }

  Node *propagate(Node *t) {
    t = clone(t);
    if (t->lazy != OM0) {
      t->key = g(t->key, p(t->lazy, 1));
      if (t->l) {
        t->l = clone(t->l);
        t->l->lazy = h(t->l->lazy, t->lazy);
        t->l->sum = g(t->l->sum, p(t->lazy, count(t->l)));
      }
      if (t->r) {
        t->r = clone(t->r);
        t->r->lazy = h(t->r->lazy, t->lazy);
        t->r->sum = g(t->r->sum, p(t->lazy, count(t->r)));
      }
      t->lazy = OM0;
    }
    return update(t);
  }

  Node *merge(Node *l, Node *r) {
    if (!l || !r) return l ? l : r;
    if (xor128() % (l->cnt + r->cnt) < l->cnt) {
      l = propagate(l);
      l->r = merge(l->r, r);
      return update(l);
    } else {
      r = propagate(r);
      r->l = merge(l, r->l);
      return update(r);
    }
  }

  pair<Node *, Node *> split(Node *t, int k) {
    if (!t) return {t, t};
    t = propagate(t);
    if (k <= count(t->l)) {
      auto s = split(t->l, k);
      t->l = s.second;
      return {s.first, update(t)};
    } else {
      auto s = split(t->r, k - count(t->l) - 1);
      t->r = s.first;
      return {update(t), s.second};
    }
  }

  Node *build(int l, int r, const vector<Monoid> &v) {
    if (l + 1 >= r) return alloc(v[l]);
    return merge(build(l, (l + r) >> 1, v), build((l + r) >> 1, r, v));
  }

  Node *build(const vector<Monoid> &v) {
    ptr = 0;
    return build(0, (int)v.size(), v);
  }

  void dump(Node *r, typename vector<Monoid>::iterator &it) {
    if (!r) return;
    r = propagate(r);
    dump(r->l, it);
    *it = r->key;
    dump(r->r, ++it);
  }

  vector<Monoid> dump(Node *r) {
    vector<Monoid> v((size_t)count(r));
    auto it = begin(v);
    dump(r, it);
    return v;
  }

  string to_string(Node *r) {
    auto s = dump(r);
    string ret;
    for (int i = 0; i < s.size(); i++) ret += ", ";
    return (ret);
  }

  void insert(Node *&t, int k, const Monoid &v) {
    auto x = split(t, k);
    t = merge(merge(x.first, alloc(v)), x.second);
  }

  void erase(Node *&t, int k) {
    auto x = split(t, k);
    t = merge(x.first, split(x.second, 1).second);
  }

  Monoid query(Node *&t, int a, int b) {
    auto x = split(t, a);
    auto y = split(x.second, b - a);
    auto ret = sum(y.first);
    t = merge(x.first, merge(y.first, y.second));
    return ret;
  }

  void set_propagate(Node *&t, int a, int b, const OperatorMonoid &p) {
    auto x = split(t, a);
    auto y = split(x.second, b - a);
    y.first->lazy = h(y.first->lazy, p);
    t = merge(x.first, merge(propagate(y.first), y.second));
  }

  void set_element(Node *&t, int k, const Monoid &x) {
    t = propagate(t);
    if (k < count(t->l))
      set_element(t->l, k, x);
    else if (k == count(t->l))
      t->key = t->sum = x;
    else
      set_element(t->r, k - count(t->l) - 1, x);
    t = update(t);
  }

  int size(Node *t) { return count(t); }

  bool empty(Node *t) { return !t; }

  Node *makeset() { return nullptr; }
};

int main() {
  int N, Q;
  cin >> N >> Q;
  vector<ll> A(N);
  REP(i, N) cin >> A[i];
  RandomizedBinarySearchTree<ll, ll> tree(
      N + Q, [](ll l, ll r) { return l + r; }, 0LL);
  auto root = tree.build(A);
  REP(q, Q) {
    int T, l, r;
    cin >> T >> l >> r;
    if (T == 1) {
      ll sum = tree.query(root, l - 1, r);
      auto lefts = tree.split(root, l - 1);
      auto rights = tree.split(lefts.second, r - l + 1);
      root = tree.merge(lefts.first, rights.second);
      tree.insert(root, l - 1, sum);
    } else {
      cout << (tree.query(root, l - 1, r)) << "\n";
    }
  }
  return 0;
}
0