結果
| 問題 |
No.1442 I-wate Shortest Path Problem
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2021-03-28 03:30:15 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,579 ms / 3,000 ms |
| コード長 | 6,713 bytes |
| コンパイル時間 | 3,951 ms |
| コンパイル使用メモリ | 225,304 KB |
| 最終ジャッジ日時 | 2025-01-20 00:10:42 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 25 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <typename CostType>
struct Edge {
int src, dst; CostType cost;
Edge(int src, int dst, CostType cost = 0) : src(src), dst(dst), cost(cost) {}
inline bool operator<(const Edge &x) const {
return cost != x.cost ? cost < x.cost : dst != x.dst ? dst < x.dst : src < x.src;
}
inline bool operator<=(const Edge &x) const { return !(x < *this); }
inline bool operator>(const Edge &x) const { return x < *this; }
inline bool operator>=(const Edge &x) const { return !(*this < x); }
};
template <typename CostType>
struct LCADoubling {
std::vector<int> depth;
std::vector<CostType> dist;
LCADoubling(const std::vector<std::vector<Edge<CostType>>> &graph) : graph(graph) {
n = graph.size();
depth.resize(n);
dist.resize(n);
while ((1 << table_h) <= n) ++table_h;
parent.resize(table_h, std::vector<int>(n));
}
void build(int root = 0) {
is_built = true;
dfs(-1, root, 0, 0);
for (int i = 0; i + 1 < table_h; ++i) for (int ver = 0; ver < n; ++ver) {
parent[i + 1][ver] = parent[i][ver] == -1 ? -1 : parent[i][parent[i][ver]];
}
}
int query(int u, int v) const {
assert(is_built);
if (depth[u] > depth[v]) std::swap(u, v);
for (int i = 0; i < table_h; ++i) {
if ((depth[v] - depth[u]) >> i & 1) v = parent[i][v];
}
if (u == v) return u;
for (int i = table_h - 1; i >= 0; --i) {
if (parent[i][u] != parent[i][v]) {
u = parent[i][u];
v = parent[i][v];
}
}
return parent[0][u];
}
CostType distance(int u, int v) const {
assert(is_built);
return dist[u] + dist[v] - dist[query(u, v)] * 2;
}
private:
bool is_built = false;
int n, table_h = 1;
std::vector<std::vector<Edge<CostType>>> graph;
std::vector<std::vector<int>> parent;
void dfs(int par, int ver, int now_depth, CostType now_dist) {
depth[ver] = now_depth;
dist[ver] = now_dist;
parent[0][ver] = par;
for (const Edge<CostType> &e : graph[ver]) {
if (e.dst != par) dfs(ver, e.dst, now_depth + 1, now_dist + e.cost);
}
}
};
template <typename T>
struct WarshallFloyd {
std::vector<std::vector<T>> graph, dist;
WarshallFloyd(const std::vector<std::vector<T>> &graph, const T inf) : graph(graph), dist(graph), inf(inf) {
n = graph.size();
internal.assign(n, std::vector<int>(n, -1));
for (int k = 0; k < n; ++k) for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) {
if (dist[i][j] > dist[i][k] + dist[k][j]) {
dist[i][j] = dist[i][k] + dist[k][j];
internal[i][j] = k;
}
}
}
void add(int src, int dst, T cost) {
srcs.emplace_back(src);
dsts.emplace_back(dst);
costs.emplace_back(cost);
}
void calc() {
std::set<int> vers;
int sz = srcs.size();
for (int i = 0; i < sz; ++i) {
int s = srcs[i], t = dsts[i];
T cost = costs[i];
if (cost < graph[s][t]) graph[s][t] = cost;
if (dist[s][t] >= cost) {
dist[s][t] = cost;
internal[s][t] = -1;
}
vers.emplace(s);
vers.emplace(t);
}
for (int v : vers) {
for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) {
if (dist[i][j] > dist[i][v] + dist[v][j]) {
dist[i][j] = dist[i][v] + dist[v][j];
internal[i][j] = v;
}
}
}
srcs.clear();
dsts.clear();
costs.clear();
}
bool has_negative_cycle() const {
for (int i = 0; i < n; ++i) {
if (dist[i][i] < 0) return true;
}
return false;
}
std::vector<int> build_path(int s, int t) const {
std::vector<int> res;
if (dist[s][t] != inf) {
build_path(s, t, res);
res.emplace_back(t);
}
return res;
}
private:
const T inf;
int n;
std::vector<std::vector<int>> internal;
std::vector<int> srcs, dsts;
std::vector<T> costs;
void build_path(int s, int t, std::vector<int> &path) const {
int k = internal[s][t];
if (k == -1) {
path.emplace_back(s);
} else {
build_path(s, k, path);
build_path(k, t, path);
}
}
};
int main() {
int n, k; cin >> n >> k;
vector<vector<Edge<ll>>> graph(n);
REP(_, n - 1) {
int a, b, c; cin >> a >> b >> c; --a; --b;
graph[a].emplace_back(a, b, c);
graph[b].emplace_back(b, a, c);
}
LCADoubling lca(graph);
lca.build();
vector<int> p(k);
vector<vector<int>> x(k);
REP(i, k) {
int m; cin >> m >> p[i];
x[i].resize(m);
REP(j, m) cin >> x[i][j], --x[i][j];
}
vector dist(k, vector(n, LINF));
REP(i, k) {
priority_queue<pair<ll, int>, vector<pair<ll, int>>, greater<pair<ll, int>>> que;
REP(j, x[i].size()) {
dist[i][x[i][j]] = 0;
que.emplace(0, x[i][j]);
}
while (!que.empty()) {
auto [cost, city] = que.top(); que.pop();
if (cost > dist[i][city]) continue;
for (const Edge<ll> &e : graph[city]) {
if (ll nx = dist[i][city] + e.cost; nx < dist[i][e.dst]) {
dist[i][e.dst] = nx;
que.emplace(nx, e.dst);
}
}
}
}
vector g(k, vector(k, LINF));
REP(i, k) REP(j, k) for (int e : x[j]) chmin(g[i][j], dist[i][e]);
WarshallFloyd wf(g, LINF);
int q; cin >> q;
while (q--) {
int u, v; cin >> u >> v; --u; --v;
ll ans = lca.distance(u, v);
vector<ll> d(k, LINF);
priority_queue<pair<ll, int>, vector<pair<ll, int>>, greater<pair<ll, int>>> que;
REP(i, k) {
d[i] = dist[i][u] + p[i];
que.emplace(d[i], i);
}
while (!que.empty()) {
auto [cost, airport] = que.top(); que.pop();
if (cost > d[airport]) continue;
REP(i, k) {
if (ll nx = d[airport] + g[airport][i] + p[i]; nx < d[i]) {
d[i] = nx;
que.emplace(nx, i);
}
}
}
REP(i, k) chmin(ans, d[i] + dist[i][v]);
cout << ans << '\n';
}
return 0;
}
emthrm