結果
| 問題 |
No.1189 Sum is XOR
|
| コンテスト | |
| ユーザー |
tanimani364
|
| 提出日時 | 2021-03-30 14:23:30 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 35 ms / 2,000 ms |
| コード長 | 3,655 bytes |
| コンパイル時間 | 2,020 ms |
| コンパイル使用メモリ | 200,372 KB |
| 最終ジャッジ日時 | 2025-01-20 00:53:40 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 21 |
ソースコード
#include <bits/stdc++.h>
//#include<boost/multiprecision/cpp_int.hpp>
//#include<boost/multiprecision/cpp_dec_float.hpp>
//#include <atcoder/all>
#define rep(i, a) for (int i = (int)0; i < (int)a; ++i)
#define rrep(i, a) for (int i = (int)a - 1; i >= 0; --i)
#define REP(i, a, b) for (int i = (int)a; i < (int)b; ++i)
#define RREP(i, a, b) for (int i = (int)a - 1; i >= b; --i)
#define repl(i, a) for (ll i = (ll)0; i < (ll)a; ++i)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define popcount __builtin_popcount
#define fi first
#define se second
using ll = long long;
constexpr ll mod = 1e9 + 7;
constexpr ll mod_998244353 = 998244353;
constexpr ll INF = 1LL << 60;
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
//using lll=boost::multiprecision::cpp_int;
//using Double=boost::multiprecision::number<boost::multiprecision::cpp_dec_float<1024>>;//仮数部が1024桁
template <class T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
template <typename T>
T mypow(T x, T n, const T &p = -1)
{ //x^nをmodで割った余り
if (p != -1)
{
x %= p;
}
T ret = 1;
while (n > 0)
{
if (n & 1)
{
if (p != -1)
ret = (ret * x) % p;
else
ret *= x;
}
if (p != -1)
x = (x * x) % p;
else
x *= x;
n >>= 1;
}
return ret;
}
using namespace std;
//using namespace atcoder;
template<int mod>
struct Modint{
int x;
Modint():x(0){}
Modint(int64_t y):x((y%mod+mod)%mod){}
Modint &operator+=(const Modint &p){
if((x+=p.x)>=mod)
x -= mod;
return *this;
}
Modint &operator-=(const Modint &p){
if((x+=mod-p.x)>=mod)
x -= mod;
return *this;
}
Modint &operator*=(const Modint &p){
x = (1LL * x * p.x) % mod;
return *this;
}
Modint &operator/=(const Modint &p){
*this *= p.inverse();
return *this;
}
Modint operator-() const { return Modint(-x); }
Modint operator+(const Modint &p) const{
return Modint(*this) += p;
}
Modint operator-(const Modint &p) const{
return Modint(*this) -= p;
}
Modint operator*(const Modint &p) const{
return Modint(*this) *= p;
}
Modint operator/(const Modint &p) const{
return Modint(*this) /= p;
}
bool operator==(const Modint &p) const { return x == p.x; }
bool operator!=(const Modint &p) const{return x != p.x;}
Modint inverse() const{//非再帰拡張ユークリッド
int a = x, b = mod, u = 1, v = 0;
while(b>0){
int t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return Modint(u);
}
Modint pow(int64_t n) const{//繰り返し二乗法
Modint ret(1), mul(x);
while(n>0){
if(n&1)
ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os,const Modint &p){
return os << p.x;
}
};
using modint = Modint<mod>;
using modint2= Modint<mod_998244353>;
void solve()
{
int n,k;
cin>>n>>k;
vector<int>a(n);
rep(i,n)cin>>a[i];
if(k>10){
cout<<0<<"\n";
return;
}
vector<int>cnt(1<<12);
rep(i,n){
cnt[a[i]]++;
}
vector<vector<modint2>>dp(1<<12,vector<modint2>(k+1));
dp[0][0]=1;
rep(i,1<<10){
rep(j,1<<10){
rep(used,k+1){
if(used<k&&(j&i)==0){
dp[j|i][used+1]+=dp[j][used]*cnt[i];
}
}
}
}
modint2 ans=0;
rep(bit,1<<10)ans+=dp[bit][k];
cout<<ans<<"\n";
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
solve();
return 0;
}
tanimani364