結果
問題 | No.1447 Greedy MtSaka |
ユーザー | soraie_ |
提出日時 | 2021-03-31 14:10:54 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 21,988 bytes |
コンパイル時間 | 4,161 ms |
コンパイル使用メモリ | 256,916 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-12-14 18:52:01 |
合計ジャッジ時間 | 4,923 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | AC | 2 ms
6,820 KB |
testcase_10 | WA | - |
testcase_11 | AC | 2 ms
6,816 KB |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
ソースコード
#ifdef _DEBUG #define _GLIBCXX_DEBUG #endif #include <bits/stdc++.h> #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") using namespace std; //-------------------------------------------------------------------- #define all(a) (a).begin(),(a).end() #define rall(a) (a).rbegin(),(a).rend() #define overload4(_1,_2,_3,_4,name,...) name #define rep1(n) for(ll _=0;_<(ll)n;++_) #define rep2(i,n) for(ll i=0;i<(ll)n;++i) #define rep3(i,a,b) for(ll i=(ll)a;i<(ll)b;++i) #define rep4(i,a,b,c) for(ll i=(ll)a;i<(ll)b;i+=(ll)c) #define rep(...) overload4(__VA_ARGS__,rep4,rep3,rep2,rep1)(__VA_ARGS__) #ifdef _DEBUG #define pass(...) __VA_ARGS__ ; #define debug1(a) cerr<<#a<<": "<<a<<"\n" #define debug2(a,b) cerr<<#a<<": "<<a<<", "<<#b<<": "<<b<<"\n" #define debug3(a,b,c) cerr<<#a<<": "<<a<<", "<<#b<<": "<<b<<", "<<#c<<": "<<c<<"\n" #define debug4(a,b,c,d) cerr<<#a<<": "<<a<<", "<<#b<<": "<<b<<", "<<#c<<": "<<c<<", "<<#d<<": "<<d<<"\n" /* #define debug1(a) cout<<#a<<": "<<a<<"\n" #define debug2(a,b) cout<<#a<<": "<<a<<", "<<#b<<": "<<b<<"\n" #define debug3(a,b,c) cout<<#a<<": "<<a<<", "<<#b<<": "<<b<<", "<<#c<<": "<<c<<"\n" #define debug4(a,b,c,d) cout<<#a<<": "<<a<<", "<<#b<<": "<<b<<", "<<#c<<": "<<c<<", "<<#d<<": "<<d<<"\n" */ #define debug(...) overload4(__VA_ARGS__,debug4,debug3,debug2,debug1)(__VA_ARGS__) #define koko cerr << "koko\n"; #else #define debug(...) void(0) #define pass(...) void(0); #define koko void(0); #endif #define mp make_pair //#define fi first //#define se second void myset(){ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} void doset(int n){cout << fixed << setprecision(n);cerr << fixed << setprecision(n);} using ll = long long; using ld = long double; using dou = double; template<class First,class Second>ostream& operator<<(ostream& os,const pair<First,Second>& pp) {return os << "{" << pp.first << "," << pp.second << "}";} template<class T>ostream& operator<<(ostream& os,const vector<T>& VV) {if(VV.empty())return os<<"[]";os<<"[";rep(i,VV.size())os<<VV[i]<<(i==int(VV.size()-1)?"]":",");return os;} template<class T>ostream& operator<<(ostream& os,const set<T>& SS) {if(SS.empty())return os<<"[]";os<<"[";auto ii=SS.begin();for(;ii!=SS.end();ii++)os<<*ii<<(ii==prev(SS.end())?"]":",");return os;} template<class Key,class Tp>ostream& operator<<(ostream& os,const map<Key,Tp>& MM) {if(MM.empty())return os<<"[]";os<<"[";auto ii=MM.begin();for(;ii!=MM.end();ii++)os<<"{"<<ii->first<<":"<<ii->second<<"}"<<(ii==prev(MM.end())?"]":",");return os;} const int inf = 1 << 30; const ll INF = 1LL << 61; const ld pi = 3.14159265358; const ll mod1 = 1000000007LL; const ll mod2 = 998244353LL; typedef pair<ll,ll> P; template<class T, class U> inline bool chmin(T& a, const U& b){ if(a > b){ a = b; return 1; } return 0; } template<class T, class U> inline bool chmax(T& a, const U& b){ if(a < b){ a = b; return 1; } return 0; } ll modpow(ll n,ll m,ll MOD){ if(m == 0)return 1; if(m < 0)return 0; ll res = 1; n %= MOD; while(m){ if(m & 1)res = (res * n) % MOD; m >>= 1; n *= n; n %= MOD; } return res; } ll mypow(ll n,ll m){ if(m == 0)return 1; if(m < 0)return -1; ll res = 1; while(m){ if(m & 1)res = (res * n); m >>= 1; n *= n; } return res; } inline bool isp(ll n){ bool res = true; if(n == 1 || n == 0)return false; else{ for(ll i = 2;i * i <= n;i++){ if(n % i == 0){ res = false; break; } } return res; } } inline bool Yes(bool b = 1){cout << (b ? "Yes\n":"No\n");return b;} inline bool YES(bool b = 1){cout << (b ? "YES\n":"NO\n");return b;} map<ll,ll> primefactor(ll n){ map<ll,ll> ma; if(n <= 1)return ma; ll m = n; for(ll i = 2;i * i <= n;i++){ while(m % i == 0){ ma[i]++; m /= i; } } if(m != 1)ma[m]++; return ma; } vector<ll> divisor(ll n,bool sorted = true,bool samein = false){ vector<ll> res; for(ll i = 1;i * i <= n;i++){ if(n % i == 0){ res.push_back(i); if(i * i != n || samein)res.push_back(n / i); } } if(sorted)sort(all(res)); return res; } ll __lcm(ll a,ll b){return a / __gcd(a,b) * b;} template<class T>T sum(const vector<T> &V){T r=0;for(auto x:V)r+=x;return r;} template<class T>T sum(const initializer_list<T> &V){T r=0;for(auto x:V)r+=x;return r;} // #include <atcoder/all> // using namespace atcoder; //-------------------------------------------------------------------- #ifndef SORAIE_GEOMETORY_MAIN #define SORAIE_GEOMETORY_MAIN #include <vector> #include <complex> #include <iostream> #include <algorithm> #include <assert.h> #define x real() #define y imag() using DD = long double; using Point = std::complex<DD>; using VP = std::vector<Point>; const DD eps = 1e-9; struct lineseg{Point S,T;lineseg(Point s = 0,Point t = 0):S(s),T(t){}}; struct line{Point S,T;line(Point s = 0,Point t = 0):S(s),T(t){}}; struct circle{Point C;DD r;circle(Point C_ = 0,DD r_ = 0):C(C_),r(r_){}}; struct polygon{ int n; VP ps; polygon(int n_ = 0):n(n_),ps(n_){} polygon(VP ps_):n(ps_.size()),ps(ps_){} Point &operator[](int n){return ps[n];} }; int sign(DD a){ if(a < -eps)return -1; else if(a > eps)return 1; else return 0; } Point inputP(){ DD X,Y; std::cin >> X >> Y; return Point(X,Y); } bool eq(DD a,DD b){return abs(a - b) < eps;} std::ostream &operator<<(std::ostream& os,Point p){return os << "(" << p.x << "," << p.y << ")";} std::ostream &operator<<(std::ostream& os,line l){return os << l.S << "->" << l.T;} std::ostream &operator<<(std::ostream& os,lineseg l){return os << l.S << "->" << l.T;} DD det(Point a,Point b){return a.x * b.y - a.y * b.x;} DD dot(Point a,Point b){return a.x * b.x + a.y * b.y;} //oを中心にpをtheta反時計回りに回転 Point rot(Point o,Point p,DD theta){ Point pp = p - o; Point res(pp.x * cosl(theta) - pp.y * sinl(theta),pp.x * sinl(theta) + pp.y * cosl(theta)); return res + o; } //a->b->cの進み方 int dir(Point a,Point b,Point c){ b -= a;c -= a; if(sign(det(b,c)) == 1)return 1;//counter clockwise else if(sign(det(b,c)) == -1)return -1;//clockwise else{ if(sign(dot(b,c)) == -1)return 2;//b a c or c a b else if(norm(b) < norm(c))return -2;//a b c or c b a or a == b else return 0;//a c b or b c a or a == c or b == c } } //直線と点 bool isecLP(line l,Point a){return abs(dir(l.S,a,l.T)) != 1;} //2つの直線の関係 int line_place(line l,line m){ if(isecLP(l,m.S) && isecLP(l,m.T))return 1;//一致 else if(isecLP(line(l.T - l.S,m.T - m.S),0))return 2;//平行 else if(sign(dot(l.T - l.S,m.T - m.S)) == 0)return 3;//直交 else return 0; } //直線と直線 bool isecLL(line l,line m){ return line_place(l,m) != 2 && line_place(l,m) != 1;//!(平行) && !一致 } //直線と線分 bool isecLS(line l,lineseg s){ s.S -= l.S;s.T -= l.S;l.T -= l.S;l.S -= l.S; return sign(det(l.T,s.S) * det(l.T,s.T)) != 1;//l.Tに対する位置関係を調べた } //線分と線分 bool isecSS(lineseg s,lineseg t){ return (dir(s.S,s.T,t.S) * dir(s.S,s.T,t.T) <= 0) && (dir(t.S,t.T,s.S) * dir(t.S,t.T,s.T) <= 0);//それぞれの線分と点を見ていき、位置関係が異なるこ(交わる)を確認 } //線分と点 bool isecSP(lineseg s,Point a){ return dir(s.S,s.T,a) == 0; } bool isecPL(Point p,line l){return isecLP(l,p);} bool isecSL(lineseg s,line l){return isecLS(l,s);} bool isecPS(Point p,lineseg s){return isecSP(s,p);} //pからlに垂線をおろした時の交点の座標 Point project(line l,Point p){ Point a = l.T - l.S,b = p - l.S; return l.S + dot(a,b) / norm(a) * a;//l.S ~ l.Tとl.S ~ pの距離の比を掛ける } //lを軸にしてpと線対称な点 Point reflect(line l,Point p){return DD(2.0) * project(l,p) - p;} //点と点 DD distPP(Point p,Point q){return abs(p - q);} //直線と点 DD distLP(line l,Point p){return distPP(project(l,p),p);} //直線と直線 DD distLL(line l,line m){ if(line_place(l,m) != 2)return 0; else return distLP(l,m.S); } //直線と線分 DD distLS(line l,lineseg s){ if(isecLS(l,s))return 0; else return std::min(distLP(l,s.S),distLP(l,s.T)); } //線分と点 DD distSP(lineseg s,Point p){ Point q = project(line(s.S,s.T),p); if(isecSP(s,q))return abs(p - q); else return std::min(std::abs(s.S - p),std::abs(s.T - p)); } //線分と線分 DD distSS(lineseg s,lineseg t){ if(isecSS(s,t))return 0; else return std::min(std::min(distSP(s,t.S),distSP(s,t.T)),std::min(distSP(t,s.S),distSP(t,s.T))); } //逆 DD distPL(Point p,line l){return distLP(l,p);} DD distSL(lineseg s,line l){return distLS(l,s);} DD distPS(Point p,lineseg s){return distSP(s,p);} //2直線の交点を返す //平行四辺形の面積を外積で出してその比を使って求める Point crosspointLL(line l,line m){ DD a = det(m.T - m.S,m.S - l.S); DD b = det(m.T - m.S,l.T - l.S); if(sign(a) == 0 && sign(b) == 0)return l.S; else if(sign(b) == 0)throw "No crosspoint"; return l.S + (l.T - l.S) * (a / b); } //円についての色々 //円と点 DD distCP(circle c,Point p,bool inside_zero = 0){ if(inside_zero)return std::max(distPP(c.C,p) - c.r,DD(0.0)); else return std::max(std::abs(distPP(c.C,p) - c.r),DD(0.0)); } //円と直線 DD distCL(circle c,line l){return std::max(distLP(l,c.C) - c.r,DD(0.0));} //円と線分 DD distCS(circle c,lineseg s,bool inside_zero = 0){ DD sqr1 = norm(s.S - c.C),sqr2 = norm(s.T - c.C); if(inside_zero == 0){ if((sqr1 < c.r * c.r) ^ (sqr2 < c.r * c.r))return 0; else if(sqr1 < c.r && sqr2 < c.r)return c.r - sqrtl(std::max(sqr1,sqr2)); else return std::max(distSP(s,c.C) - c.r,DD(0.0)); } else{ if(sqr1 < c.r * c.r || sqr2 < c.r * c.r)return 0; else return std::max(distSP(s,c.C) - c.r,DD(0.0)); } } //円と円 DD distCC(circle c,circle d){ DD di = abs(c.C - d.C); return sign(di - abs(c.r - d.r)) == 1 ? std::max(di - c.r - d.r,DD(0.0)):abs(c.r - d.r) - di;//!内包:内包 } DD distPC(Point p,circle c,bool b = 0){return distCP(c,p,b);} DD distLC(line l,circle c){return distCL(c,l);} DD distSC(lineseg s,circle c,bool b = 0){return distCS(c,s,b);} //円と点 bool isecCP(circle c,Point p){return sign(distCP(c,p)) == 0;} //円と直線 bool isecCL(circle c,line l){return sign(distCL(c,l)) == 0;} //円と線分 bool isecCS(circle c,lineseg s){return sign(distCS(c,s)) == 0;} //円と円 bool isecCC(circle c,circle d){return sign(distCC(c,d)) == 0;} bool isecPC(Point p,circle c){return isecCP(c,p);} bool isecLC(line l,circle c){return isecCL(c,l);} bool isecSC(lineseg s,circle c){return isecCS(c,s);} //円と直線の交点 VP crosspointCL(circle c,line l){ VP res; if(sign(distCL(c,l) - c.r) == 1)return res; Point p = project(l,c.C);//弦に対する垂直二等分線の交点 Point q = std::max(sqrtl(c.r * c.r - norm(p - c.C)),DD(0.0)) / abs(l.T - l.S) * (l.T - l.S); res.push_back(p + q); if(sign(norm(p) - c.r * c.r) != 0)res.push_back(p - q); return res; } //円と円 //1.交差判定 //2.(url先の図の)青と赤の交点とc.Cの距離を求める //3.赤のベクトルと青と赤の交点を求める VP crosspointCC(circle c,circle d){ VP res; if(sign(distCC(c,d)) != 0)return res;//1 Point cd = d.C - c.C; DD di = abs(cd);//c.Cとd.Cの距離 DD X = (norm(cd) - d.r * d.r + c.r * c.r) / (DD(2.0) * di);//2 Point kou = c.C + X / di * cd;//交点 3 Point redv = cd * Point(0,sqrtl(c.r * c.r - X * X) / di);//赤ベクトルを比と回転で求める res.push_back(kou + redv); if(sign(norm(redv)) != 0)res.push_back(kou - redv); return res; } //pからcへの接線の接点 //辺の比から角度を出して計算 VP tangentpoints(circle c,Point p){ VP res; DD sin = c.r / abs(p - c.C); if(sign(sin - DD(1.0)) == 1)return res; DD theta = M_PI_2 - asin(std::min(sin,DD(1.0))); res.push_back(c.C + (p - c.C) * std::polar(sin,theta)); if(sign(sin - DD(1.0)) != 0)res.push_back(c.C + (p - c.C) * std::polar(sin,-theta)); return res; } //2つの円の共通接線を返す //1.接線は分からないので接点との三角比を求める //2.単位ベクトルを掛けたりする std::vector<line> tangetlines(circle c,circle d,bool same_point = 0){ std::vector<line> res; bool swaped = 0; if(c.r < d.r){ std::swap(c,d); swaped = 1; } DD g = norm(c.C - d.C); if(sign(g) == 0)return res; Point u = (d.C - c.C) / sqrtl(g);//c->dの単位ベクトル Point v = u * Point(0,1);//uを90°回転 for(int s : {-1,1}){ DD h = (c.r + DD(s) * d.r) / sqrt(g);//cos(接点1,c.r,d.r) if(sign(h * h - DD(1.0)) == 0){//二つの円が接しているところ if(!same_point)res.push_back(line(c.C + u * c.r,c.C + u * c.r + v));//vを足して同じ点を返すことを防ぐ else res.push_back(line(c.C + u * c.r,c.C + u * c.r)); } else if(sign(DD(1.0) - h * h) == 1){ Point uu = u * h,vv = v * sqrtl(DD(1.0) - h * h);//uu:u * cos,vv:v * sin res.push_back(line(c.C + (uu + vv) * c.r,d.C - (uu + vv) * d.r * DD(s))); res.push_back(line(c.C + (uu - vv) * c.r,d.C - (uu - vv) * d.r * DD(s))); } } if(swaped)for(auto &a : res)swap(a.S,a.T); return res; } //pとqを通る半径dの円の中心 VP circlepointsradius(Point p,Point q,DD d){ VP res; Point pqM = (q - p) / DD(2.0); DD di = abs(pqM); if(sign(di) == 0 || norm(pqM) > d * d)return res; Point n = pqM * Point(0,1) * (sqrtl(norm(pqM) - d * d) / di);//ベクトルを90°回転させて比をかける res.push_back(p + pqM + n); if(sign(sqrtl(norm(pqM) - d * d)) > 0)res.push_back(p + pqM - n); return res; } //多角形 //外心 Point gaisin(polygon po){ assert(po.n == 3); po[0] = (po[0] - po[2]) / DD(2.0); po[1] = (po[1] - po[2]) / DD(2.0); return po[2] + crosspointLL(line(po[0],po[0] * Point(1,1)),line(po[1],po[1] * Point(1,1))); } Point gaisin(Point a,Point b,Point c){return gaisin(polygon({a,b,c}));} //重心 Point jusin(polygon po){ assert(po.n == 3); return (po[0] + po[1] + po[2]) / DD(3.0); } Point jusin(Point a,Point b,Point c){return jusin(polygon({a,b,c}));} //内心 Point naisin(polygon po){ assert(po.n == 3); DD a = distPP(po[1],po[2]); DD b = distPP(po[0],po[2]); DD c = distPP(po[0],po[1]); return (po[0] * a + po[1] * b + po[2] * c) / (a + b + c); } Point naisin(Point a,Point b,Point c){return naisin(polygon({a,b,c}));} //垂心 //オイラー線:垂心H,重心G,外心OとするとOG:GH = 1:2 Point suisin(polygon po){ assert(po.n == 3); return po[0] + po[1] + po[2] - DD(2.0) * gaisin(po); } Point suisin(Point a,Point b,Point c){return suisin(polygon({a,b,c}));} circle minenclosingcircle(const VP &ps){ int n = ps.size(); VP alt; for(int i = 0;i < n;i++){ for(int j = i + 1;j < n;j++){ alt.push_back((ps[i] + ps[j]) / DD(2)); for(int k = j + 1;k < n;k++){ if(dir(ps[i],ps[j],ps[k]) != 1 && dir(ps[i],ps[j],ps[k]) != -1)continue; alt.push_back(gaisin(ps[i],ps[j],ps[k])); } } } DD r = 1LL << 60; Point c; for(Point p : alt){ DD mx = 0; for(int i = 0;i < n;i++){ mx = std::max(mx,distPP(ps[i],p)); } if(sign(r - mx) == 1){ r = mx; c = p; } } return circle(c,r); } //全ての頂点を含む最小の円を返す circle minenclosingcircle2(const VP &ps){ Point c; DD move = 0.5; for(int i = 0;i < 40;i++){//精度 for(int _ = 0;_ < 200;_++){//ここによって変わりそう DD mx = 0; int k = 0; for(int j = 0;j < int(ps.size());j++){ if(mx < norm(ps[j] - c)){ mx = norm(ps[j] - c); k = j; } } c += (ps[k] - c) * move; } move /= DD(2.0); } DD r = 0; for(int i = 0;i < int(ps.size());i++){ r = std::max(r,std::abs(c - ps[i])); } return circle(c,r); } //多角形の面積 DD area(polygon &po){ DD a = 0; for(int i = 0;i < po.n;i++)a += det(po[i],po[(i + 1) % po.n]); // return a / DD(2); return ll(a + 0.1); } //多角形の凸判定 bool isconvex(polygon& po){ int neg = 0,pos = 0; for(int i = 0;i < po.n;i++){ int ccw = dir(po[i],po[(i + 1) % po.n],po[(i + 2) % po.n]); if(ccw == 1)pos++; else if(ccw == -1)neg++; } if(pos && neg)return false; else return true; } //多角形の内部判定 //pからx正の方向へ半直線を伸ばして交点を数える //0:外部,1:内部,2:線分上 int inpolygon(Point p,polygon& po){ int n = po.n; bool in = 0; for(int i = 0;i < n;i++){ Point a = po[i]; Point b = po[(i + 1) % n]; if(isecPS(p,lineseg(a,b)))return 2; if(!isecLS(line(p,p + DD(1.0)),lineseg(a,b)))continue; if(a.y > b.y)swap(a,b); try{ Point q = crosspointLL(line(p,p + DD(1.0)),line(a,b)); if(sign(q.x - p.x) == 1 && !(sign(q.x - b.x) == 0 && sign(q.y - b.y) == 0))in = !in; } catch(...){continue;} } return in; } bool compare_x(const Point a,const Point b){ return sign(a.x - b.x) == 0 ? a.y < b.y:a.x < b.x; } bool compare_y(const Point a,const Point b){ return sign(a.y - b.y) == 0 ? a.x < b.x:a.y < b.y; } //凸包 VP convexhull(VP vp){ int n = vp.size(); int k = 0; sort(vp.begin(),vp.end(),compare_x); VP res(2 * n); for(int i = 0;i < n;i++){ while(k >= 2 && dir(res[k - 2],res[k - 1],vp[i]) == 1)k--; res[k] = vp[i]; k++; } int t = k + 1; k--; for(int i = n - 1;i >= 0;i--){ while(k >= t && dir(res[k - 2],res[k - 1],vp[i]) == 1)k--; res[k] = vp[i]; k++; } res.resize(k - 1); return res; } //最遠点対凸多角形になってる場合のみ std::pair<int,int> farthestpoints(const VP& con){ int n = con.size(); int i = std::min_element(con.begin(),con.end(),compare_x) - con.begin(); int j = std::max_element(con.begin(),con.end(),compare_x) - con.begin(); int MAXI = -1,MAXJ = -1; DD MAXDD = 0; for(int k = 0;k < 2 * n;k++){ if(MAXDD < std::norm(con[i] - con[j])){ MAXDD = std::norm(con[i] - con[j]); MAXI = i;MAXJ = j; } if(sign(det(con[(i + 1) % n] - con[i],con[j] - con[(j + 1) % n])) <= 0)j = (j + 1) % n; else i = (i + 1) % n; } return std::make_pair(MAXI,MAXJ); } DD farthestdist(VP& vp){ vp = convexhull(vp); std::reverse(vp.begin(),vp.end()); auto r = farthestpoints(vp); return abs(vp[r.first] - vp[r.second]); } //最近点対 //分割統治 DD closestdist(VP &vp,int l,int r){ if(r - l <= 1)return 1LL << 60; int mid = (l + r) / 2; DD X = vp[mid].x; DD d = std::min(closestdist(vp,l,mid),closestdist(vp,mid,r)); std::inplace_merge(vp.begin() + l,vp.begin() + mid,vp.begin() + r,compare_y); std::vector<Point> B; for(int i = l;i < r;i++){ if(sign(std::abs(vp[i].x - X) - d) >= 0)continue; for(int j = B.size() - 1;j >= 0;j--){ if(sign(std::abs((vp[i] - B[j]).y) - d) >= 0)break; if(d > std::abs(vp[i] - B[j]))d = std::abs(vp[i] - B[j]); } B.push_back(vp[i]); } return d; } DD closestdist(VP &vp){ return closestdist(vp,0,int(vp.size())); } //2円の共通面積 DD twocirclearea(circle c,circle d){ DD dist = abs(c.C - d.C); if(sign(dist - c.r - d.r) >= 0)return DD(0.0); if(sign(dist - abs(c.r - d.r)) <= 0){ DD r = std::min(c.r,d.r); return r * r * M_PI; } //2円の交点を求めた時と同じように距離を測る DD rc = (c.r * c.r - d.r * d.r + dist * dist) / (DD(2.0) * dist); DD theta1 = acosl(rc / c.r); DD theta2 = acosl((dist - rc) / d.r); return (c.r * c.r * theta1 + d.r * d.r * theta2 - dist * sinl(theta1) * c.r); } //幾何グラフ struct g_edge{ int from,to;DD cost; g_edge(int from_,int to_,DD cost_):from(from_),to(to_),cost(cost_){} }; struct g_graph{ int n; std::vector<std::vector<g_edge>> es; g_graph(int n_ = 0):n(n_),es(n_){} void add_edge(g_edge e){ es[e.from].push_back(e); es[e.to].push_back({e.to,e.from,e.cost}); } }; //可視グラフ g_graph visibilitygraph(const VP& vp,const std::vector<polygon>& objs){ int n = vp.size(); g_graph res(n); bool cross = 0; for(int i = 0;i < n;i++){ for(int j = 0;j < i;j++){ cross = 0; for(auto obj : objs){ int A = inpolygon(vp[i],obj); int B = inpolygon(vp[j],obj); if((A ^ B) % 2 || (A * B != 1 && inpolygon((vp[i] + vp[j]) * DD(0.5),obj) == 1)){ cross = 1; break; } for(int k = 0;k < obj.n;k++){ lineseg ls(obj[k],obj[(k + 1) % obj.n]); if(isecSS(lineseg(vp[i],vp[j]),ls) && !isecSP(ls,vp[i]) && !isecSP(ls,vp[j])){ cross = 1; break; } } if(cross)break; } if(!cross)res.add_edge({int(i),int(j),abs(vp[i] - vp[j])}); } } return res; } //#undef x //#undef y #endif /*SORAIE_GEOMETORY_MAIN*/ int main(){ myset(); int N; cin >> N; VP vec(N); rep(i,N)vec[i] = inputP(); polygon p(vec); cout << area(p) << "\n"; }