結果

問題 No.105 arcの六角ボルト
ユーザー tanimani364tanimani364
提出日時 2021-04-01 01:23:28
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 34 ms / 5,000 ms
コード長 4,017 bytes
コンパイル時間 2,539 ms
コンパイル使用メモリ 200,332 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-05-09 12:10:21
合計ジャッジ時間 2,737 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 34 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
//#include<boost/multiprecision/cpp_int.hpp>
//#include<boost/multiprecision/cpp_dec_float.hpp>
//#include <atcoder/all>
#define rep(i, a) for (int i = (int)0; i < (int)a; ++i)
#define rrep(i, a) for (int i = (int)a - 1; i >= 0; --i)
#define REP(i, a, b) for (int i = (int)a; i < (int)b; ++i)
#define RREP(i, a, b) for (int i = (int)a - 1; i >= b; --i)
#define repl(i, a) for (ll i = (ll)0; i < (ll)a; ++i)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define popcount __builtin_popcount
#define fi first
#define se second
using ll = long long;
constexpr ll mod = 1e9 + 7;
constexpr ll mod_998244353 = 998244353;
constexpr ll INF = 1LL << 60;

// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")

//using lll=boost::multiprecision::cpp_int;
//using Double=boost::multiprecision::number<boost::multiprecision::cpp_dec_float<1024>>;//仮数部が1024桁
template <class T>
inline bool chmin(T &a, T b)
{
	if (a > b)
	{
		a = b;
		return true;
	}
	return false;
}
template <class T>
inline bool chmax(T &a, T b)
{
	if (a < b)
	{
		a = b;
		return true;
	}
	return false;
}

template <typename T>
T mypow(T x, T n, const T &p = -1)
{ //x^nをmodで割った余り

	if (p != -1)
	{
		x %= p;
	}
	T ret = 1;
	while (n > 0)
	{
		if (n & 1)
		{
			if (p != -1)
				ret = (ret * x) % p;
			else
				ret *= x;
		}
		if (p != -1)
			x = (x * x) % p;
		else
			x *= x;
		n >>= 1;
	}
	return ret;
}

using namespace std;
//using namespace atcoder;

template<int mod>
struct Modint{
    int x;
    Modint():x(0){}
    Modint(int64_t y):x((y%mod+mod)%mod){}

    Modint &operator+=(const Modint &p){
			if((x+=p.x)>=mod)
				x -= mod;
			return *this;
		}

		Modint &operator-=(const Modint &p){
			if((x+=mod-p.x)>=mod)
				x -= mod;
			return *this;
		}

		Modint &operator*=(const Modint &p){
			x = (1LL * x * p.x) % mod;
			return *this;
		}

		Modint &operator/=(const Modint &p){
			*this *= p.inverse();
			return *this;
		}

		Modint operator-() const { return Modint(-x); }
		Modint operator+(const Modint &p) const{
			return Modint(*this) += p;
		}
		Modint operator-(const Modint &p) const{
			return Modint(*this) -= p;
		}
		Modint operator*(const Modint &p) const{
			return Modint(*this) *= p;
		}
		Modint operator/(const Modint &p) const{
			return Modint(*this) /= p;
		}

		bool operator==(const Modint &p) const { return x == p.x; }
		bool operator!=(const Modint &p) const{return x != p.x;}

		Modint inverse() const{//非再帰拡張ユークリッド
			int a = x, b = mod, u = 1, v = 0;
			while(b>0){
				int t = a / b;
				swap(a -= t * b, b);
				swap(u -= t * v, v);
			}
			return Modint(u);
		}

		Modint pow(int64_t n) const{//繰り返し二乗法
			Modint ret(1), mul(x);
			while(n>0){
				if(n&1)
					ret *= mul;
				mul *= mul;
				n >>= 1;
			}
			return ret;
		}

		friend ostream &operator<<(ostream &os,const Modint &p){
			return os << p.x;
		}
};

using modint = Modint<mod>;
using modint2= Modint<mod_998244353>;

template<typename T>
struct Combination{
  //Modint用
  //構築O(N),クエリO(1)
	vector<T>fact,rfact;

	Combination(int n):fact(n+1),rfact(n+1){
		fact[0]=1;fact[1]=1;
		rfact[n]=1;
		for(int i=2;i<=n;++i){
			fact[i]=fact[i-1]*i;
		}
		rfact[n]/=fact[n];
		for(int i=n-1;i>=0;--i){
			rfact[i]=rfact[i+1]*(i+1);
		}
	}

	T C(int n,int r) const{
		if(r==0)return 1;
		if(r<0 || n<r)return 0;
		return fact[n]*rfact[n-r]*rfact[r];
	}
};

void solve()
{	
	int t;
	cin>>t;
	while(t--){
		double arg=atan2(0,1);
		auto judge=[](double x,double y)->bool{
			return abs(x-y)<=1e-9;
		};
		double eps=1e-9;
		double ans=0;
		rep(i,6){
			double x,y;
			cin>>x>>y;
			double arg2=atan2(y,x);
			double sub=(arg2-arg)*180/acos(-1);
			if(-eps<=sub&&sub<=50+eps){
				ans=sub;
			}
		}
		cout<<ans<<"\n";
	}
}

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	cout << fixed << setprecision(15);
	solve();
	return 0;
}
0