結果
問題 | No.105 arcの六角ボルト |
ユーザー | tanimani364 |
提出日時 | 2021-04-01 01:23:28 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 34 ms / 5,000 ms |
コード長 | 4,017 bytes |
コンパイル時間 | 2,539 ms |
コンパイル使用メモリ | 200,332 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-05-09 12:10:21 |
合計ジャッジ時間 | 2,737 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ソースコード
#include <bits/stdc++.h> //#include<boost/multiprecision/cpp_int.hpp> //#include<boost/multiprecision/cpp_dec_float.hpp> //#include <atcoder/all> #define rep(i, a) for (int i = (int)0; i < (int)a; ++i) #define rrep(i, a) for (int i = (int)a - 1; i >= 0; --i) #define REP(i, a, b) for (int i = (int)a; i < (int)b; ++i) #define RREP(i, a, b) for (int i = (int)a - 1; i >= b; --i) #define repl(i, a) for (ll i = (ll)0; i < (ll)a; ++i) #define pb push_back #define eb emplace_back #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define popcount __builtin_popcount #define fi first #define se second using ll = long long; constexpr ll mod = 1e9 + 7; constexpr ll mod_998244353 = 998244353; constexpr ll INF = 1LL << 60; // #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") //using lll=boost::multiprecision::cpp_int; //using Double=boost::multiprecision::number<boost::multiprecision::cpp_dec_float<1024>>;//仮数部が1024桁 template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } template <typename T> T mypow(T x, T n, const T &p = -1) { //x^nをmodで割った余り if (p != -1) { x %= p; } T ret = 1; while (n > 0) { if (n & 1) { if (p != -1) ret = (ret * x) % p; else ret *= x; } if (p != -1) x = (x * x) % p; else x *= x; n >>= 1; } return ret; } using namespace std; //using namespace atcoder; template<int mod> struct Modint{ int x; Modint():x(0){} Modint(int64_t y):x((y%mod+mod)%mod){} Modint &operator+=(const Modint &p){ if((x+=p.x)>=mod) x -= mod; return *this; } Modint &operator-=(const Modint &p){ if((x+=mod-p.x)>=mod) x -= mod; return *this; } Modint &operator*=(const Modint &p){ x = (1LL * x * p.x) % mod; return *this; } Modint &operator/=(const Modint &p){ *this *= p.inverse(); return *this; } Modint operator-() const { return Modint(-x); } Modint operator+(const Modint &p) const{ return Modint(*this) += p; } Modint operator-(const Modint &p) const{ return Modint(*this) -= p; } Modint operator*(const Modint &p) const{ return Modint(*this) *= p; } Modint operator/(const Modint &p) const{ return Modint(*this) /= p; } bool operator==(const Modint &p) const { return x == p.x; } bool operator!=(const Modint &p) const{return x != p.x;} Modint inverse() const{//非再帰拡張ユークリッド int a = x, b = mod, u = 1, v = 0; while(b>0){ int t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return Modint(u); } Modint pow(int64_t n) const{//繰り返し二乗法 Modint ret(1), mul(x); while(n>0){ if(n&1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os,const Modint &p){ return os << p.x; } }; using modint = Modint<mod>; using modint2= Modint<mod_998244353>; template<typename T> struct Combination{ //Modint用 //構築O(N),クエリO(1) vector<T>fact,rfact; Combination(int n):fact(n+1),rfact(n+1){ fact[0]=1;fact[1]=1; rfact[n]=1; for(int i=2;i<=n;++i){ fact[i]=fact[i-1]*i; } rfact[n]/=fact[n]; for(int i=n-1;i>=0;--i){ rfact[i]=rfact[i+1]*(i+1); } } T C(int n,int r) const{ if(r==0)return 1; if(r<0 || n<r)return 0; return fact[n]*rfact[n-r]*rfact[r]; } }; void solve() { int t; cin>>t; while(t--){ double arg=atan2(0,1); auto judge=[](double x,double y)->bool{ return abs(x-y)<=1e-9; }; double eps=1e-9; double ans=0; rep(i,6){ double x,y; cin>>x>>y; double arg2=atan2(y,x); double sub=(arg2-arg)*180/acos(-1); if(-eps<=sub&&sub<=50+eps){ ans=sub; } } cout<<ans<<"\n"; } } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(15); solve(); return 0; }