結果
問題 | No.310 2文字しりとり |
ユーザー | rickytheta |
提出日時 | 2015-12-08 23:26:38 |
言語 | C++11 (gcc 11.4.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,511 bytes |
コンパイル時間 | 1,907 ms |
コンパイル使用メモリ | 176,908 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-14 20:26:05 |
合計ジャッジ時間 | 6,419 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 3 ms
5,376 KB |
testcase_19 | AC | 7 ms
5,376 KB |
testcase_20 | AC | 8 ms
5,376 KB |
testcase_21 | AC | 587 ms
5,376 KB |
testcase_22 | AC | 696 ms
5,376 KB |
testcase_23 | AC | 693 ms
5,376 KB |
testcase_24 | WA | - |
testcase_25 | AC | 691 ms
5,376 KB |
testcase_26 | AC | 140 ms
5,376 KB |
testcase_27 | AC | 202 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; typedef long long ll; typedef vector<int> vi; typedef vector<ll> vl; typedef complex<double> P; typedef pair<int,int> pii; #define REP(i,n) for(ll i=0;i<n;++i) #define REPR(i,n) for(ll i=1;i<n;++i) #define FOR(i,a,b) for(ll i=a;i<b;++i) #define DEBUG(x) cout<<#x<<": "<<x<<endl #define DEBUG_VEC(v) cout<<#v<<":";REP(i,v.size())cout<<" "<<v[i];cout<<endl #define ALL(a) (a).begin(),(a).end() #define MOD (ll)(1e9+7) #define ADD(a,b) a=((a)+(b))%MOD #define FIX(a) ((a)%MOD+MOD)%MOD #define V_MAX 4010 struct UF{ vi data; UF(int size):data(size,-1){} int root(int a){ return data[a]<0 ? a : data[a]=root(data[a]); } void unite(int a,int b){ a=root(a); b=root(b); if(a!=b){ if(data[b]<data[a])swap(a,b); data[a] += data[b]; data[b] = a; } } bool same(int a,int b){ return root(a) == root(b); } int size(int a){ return -data[root(a)]; } }; ll fact[V_MAX]; void fact_init(){ fact[0] = 1; REPR(i,V_MAX){ fact[i] = i*fact[i-1]; fact[i] %= MOD; } } int inv(ll a){ ll t = MOD-2; ll res = 1; while(t){ if(t&1==1){ res = res*a%MOD; } t >>= 1; a = a*a%MOD; } return res; } vl berlekamp_massey(vl s){ ll N = s.size(); ll L=0,m=1,b=1,Bsz=1; vl C(N+1),B(1); C[0]=1; B[0]=1; REP(n,N){ ll d = s[n]; REPR(i,L+1) d += C[i]*s[n-i]%MOD; d %= MOD; if(d==0){ ++m; }else if(2*L <= n){ vl T;REP(i,L+1)T.push_back(C[i]); ll rate = (MOD-(d*inv(b))%MOD)%MOD; REP(i,Bsz) C[m+i] = (C[m+i]+rate*B[i])%MOD; L = n+1-L; B = T; Bsz = B.size(); b = d; m = 1; }else{ ll rate = (MOD-(d*inv(b))%MOD)%MOD; REP(i,Bsz) C[m+i] = (C[m+i]+rate*B[i])%MOD; ++m; } } C.resize(L+1); return C; } // typedef unsigned long uint32_t; uint32_t xorshift(){ static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123; uint32_t t; t = x^(x<<11); x = y; y = z; z = w; return w = (w^(w>>19))^(t^(t>>8)); } // 対角成分はなんか値が入ってる // それ以外の「ほとんど」は-1 // -1じゃない(0)のはたかだかM個 ll det(ll n,vl dmat,vector<pii> edges,ll beg,ll end){ if(n<=0)return 1; vl b(n),u(n); vl D(n); // diagonal matrix REP(i,n)while(b[i]==0)b[i] = xorshift()%MOD; REP(i,n)while(u[i]==0)u[i] = xorshift()%MOD; REP(i,n)while(D[i]==0)D[i] = xorshift()%MOD; vl a(2*n); a[0]=0; REP(j,n)a[0]+=u[j]*b[j]%MOD; a[0]%=MOD; REPR(i,2*n){ // a_i = u^T * ( mat*D * (mat*D)^(i-1) * b) // 右から vl mb(n); ll sum = 0; REP(j,n){ b[j] = (b[j]*D[j])%MOD; sum = (sum+b[j])%MOD; } REP(j,n){ mb[j] = MOD-sum; mb[j] += b[j]*(dmat[j])%MOD; mb[j] %= MOD; } if(beg!=-1 && end!=-1 && beg<n && end<n){ mb[end] += MOD-b[beg]; mb[end] %= MOD; } REP(j,edges.size()){ pii e = edges[j]; if(e.first!=-1 && e.second!=-1 && e.first<n && e.second<n){ mb[e.first] += b[e.second]; mb[e.first] %= MOD; } } b = mb; a[i] = 0; REP(j,n){ b[j]%=MOD; a[i]+=u[j]*b[j]; a[i]%=MOD; } } vl minimal = berlekamp_massey(a); ll ret = 1; ll detd = 1; REP(i,n)detd = (detd*D[i])%MOD; ret = minimal[n] * inv(detd) % MOD; if(n%2==1)ret = MOD-ret; ret %= MOD; return ret; } // ll determinant(int dim,vector<vl> mat){ // if(dim==0)return 1; // REPR(i,dim)REP(j,dim){ // mat[i][j] -= mat[0][j]; // } // REP(i,dim)REP(j,dim)mat[i][j] = FIX(mat[i][j]); // ll result = 1; // REP(i,dim-1){ // bool flag = false; // FOR(j,i,dim){ // if(mat[j][i]!=0){ // if(i!=j){ // swap(mat[j],mat[i]); // result = (-result + MOD)%MOD; // } // flag = true; // break; // } // } // if(!flag)return 0; // ll iv = inv(mat[i][i]); // FOR(j,i+1,dim){ // if(mat[j][i]==0)continue; // ll rate = mat[j][i] * iv; // rate %= MOD; // FOR(k,i,dim){ // mat[j][k] -= (mat[i][k]*rate)%MOD; // mat[j][k] = FIX(mat[j][k]); // } // } // result *= mat[i][i]; // result %= MOD; // } // result *= mat[dim-1][dim-1]; // result %= MOD; // return result; // } ll solve(){ int n,m; cin >> n >> m; vi indeg(n,n),outdeg(n,n); vector<pii> edges(m); REP(i,m){ int a,b; cin >> a >> b; --a;--b; edges[i] = make_pair(a,b); outdeg[a]--; indeg[b]--; } // no edge if(n*n==m)return 1; // check eulerian int beg=-1,end=-1; REP(i,n){ if(indeg[i]==outdeg[i])continue; if(beg==-1 && indeg[i]-1==outdeg[i]){ beg=i; continue; } if(end==-1 && indeg[i]==outdeg[i]-1){ end=i; continue; } return 0; } if(beg!=-1 && end==-1)return 0; if(beg==-1 && end!=-1)return 0; if(beg!=-1 && end!=-1){ outdeg[beg]++; indeg[end]++; } // check & delete isolation sort(ALL(edges)); UF uf = UF(n); int root = -1; int iter = 0; REP(i,n){ if(root==-1 && indeg[i]>0) root = i; REP(j,n){ if(iter<m && edges[iter].first == i && edges[iter].second == j){ ++iter; }else{ uf.unite(i,j); } } } if(root==-1)return 1; int mp[n]; int t = 0; vl deg(n); REP(i,n){ if(!uf.same(root,i)){ if(indeg[i]>0){ return 0; } mp[i] = -1; }else{ mp[i] = t; deg[t] = outdeg[i]; ++t; } } REP(i,m){ edges[i].first = mp[edges[i].first]; edges[i].second = mp[edges[i].second]; } if(beg!=-1 && end!=-1){ beg = mp[beg]; end = mp[end]; if(beg==-1 || end==-1)return 0; } // vector<vl> Q(t,vl(t,-1)); // REP(i,t){ // Q[i][i] += deg[i]; // } // REP(i,m){ // if(edges[i].first != -1 && edges[i].second != -1) // Q[edges[i].first][edges[i].second] += 1; // } // if(beg!=-1 && end!=-1){ // Q[end][beg] -= 1; // } // BEST theorem // ec(G) = t_w(G) PI_{v in V}(deg(v)-1)! // matrix tree theorem // t_w(G) = (determinant of Laplacian matrix) fact_init(); ll result = 1; REP(i,t){ result *= fact[deg[i]-1]; result %= MOD; } result *= det(t-1,deg,edges,beg,end); result %= MOD; if(beg==-1 && end==-1){ result *= n*n-m; result %= MOD; } return result; } int main(){ // counting eulerian circuit cout << solve() << endl; return 0; }