結果
| 問題 |
No.631 Noelちゃんと電車旅行
|
| コンテスト | |
| ユーザー |
yuruhiya
|
| 提出日時 | 2021-04-02 16:54:44 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 65 ms / 2,000 ms |
| コード長 | 24,811 bytes |
| コンパイル時間 | 1,968 ms |
| コンパイル使用メモリ | 202,800 KB |
| 最終ジャッジ日時 | 2025-01-20 07:56:28 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 21 |
ソースコード
#line 2 "/home/yuruhiya/programming/library/Utility/get_MOD.cpp"
constexpr long long get_MOD() {
#ifdef SET_MOD
return SET_MOD;
#else
return 1000000007;
#endif
}
#line 3 "/home/yuruhiya/programming/library/Utility/constants.cpp"
#include <vector>
#include <string>
#include <utility>
#include <queue>
#define rep(i, n) for (int i = 0; i < (n); ++i)
#define FOR(i, m, n) for (int i = (m); i < (n); ++i)
#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)
#define rfor(i, m, n) for (int i = (m); i >= (n); --i)
#define loop(n) rep(i##__COUNTER__, n)
#define unless(c) if (!(c))
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)
using ll = long long;
using LD = long double;
using VB = std::vector<bool>;
using VVB = std::vector<VB>;
using VI = std::vector<int>;
using VVI = std::vector<VI>;
using VL = std::vector<ll>;
using VVL = std::vector<VL>;
using VS = std::vector<std::string>;
using VD = std::vector<LD>;
using PII = std::pair<int, int>;
using VP = std::vector<PII>;
using PLL = std::pair<ll, ll>;
using VPL = std::vector<PLL>;
template <class T> using PQ = std::priority_queue<T>;
template <class T> using PQS = std::priority_queue<T, std::vector<T>, std::greater<T>>;
constexpr int inf = 1000000000;
constexpr long long inf_ll = 1000000000000000000ll, MOD = get_MOD();
constexpr long double PI = 3.14159265358979323846, EPS = 1e-12;
#line 2 "/home/yuruhiya/programming/library/Utility/Scanner.cpp"
#include <iostream>
#line 6 "/home/yuruhiya/programming/library/Utility/Scanner.cpp"
#include <tuple>
#include <type_traits>
#ifdef _WIN32
#define getchar_unlocked _getchar_nolock
#define putchar_unlocked _putchar_nolock
#define fwrite_unlocked fwrite
#define fflush_unlocked fflush
#endif
class Scanner {
static int gc() {
return getchar_unlocked();
}
static char next_char() {
char c;
scan(c);
return c;
}
template <class T> static void scan(T& v) {
std::cin >> v;
}
static void scan(char& v) {
while (std::isspace(v = gc()))
;
}
static void scan(bool& v) {
v = next_char() != '0';
}
static void scan(std::vector<bool>::reference v) {
bool b;
scan(b);
v = b;
}
static void scan(std::string& v) {
v.clear();
for (char c = next_char(); !std::isspace(c); c = gc()) v += c;
}
static void scan(int& v) {
v = 0;
bool neg = false;
char c = next_char();
if (c == '-') {
neg = true;
c = gc();
}
for (; std::isdigit(c); c = gc()) v = v * 10 + (c - '0');
if (neg) v = -v;
}
static void scan(long long& v) {
v = 0;
bool neg = false;
char c = next_char();
if (c == '-') {
neg = true;
c = gc();
}
for (; std::isdigit(c); c = gc()) v = v * 10 + (c - '0');
if (neg) v = -v;
}
static void scan(double& v) {
v = 0;
double dp = 1;
bool neg = false, after_dp = false;
char c = next_char();
if (c == '-') {
neg = true;
c = gc();
}
for (; std::isdigit(c) || c == '.'; c = gc()) {
if (c == '.') {
after_dp = true;
} else if (after_dp) {
v += (c - '0') * (dp *= 0.1);
} else {
v = v * 10 + (c - '0');
}
}
if (neg) v = -v;
}
static void scan(long double& v) {
v = 0;
long double dp = 1;
bool neg = false, after_dp = false;
char c = next_char();
if (c == '-') {
neg = true;
c = gc();
}
for (; std::isdigit(c) || c == '.'; c = gc()) {
if (c == '.') {
after_dp = true;
} else if (after_dp) {
v += (c - '0') * (dp *= 0.1);
} else {
v = v * 10 + (c - '0');
}
}
if (neg) v = -v;
}
template <class T, class U> static void scan(std::pair<T, U>& v) {
scan(v.first);
scan(v.second);
}
template <class T, std::enable_if_t<!std::is_same_v<bool, T>, std::nullptr_t> = nullptr>
static void scan(std::vector<T>& v) {
for (auto& e : v) scan(e);
}
template <class T, std::enable_if_t<std::is_same_v<bool, T>, std::nullptr_t> = nullptr>
static void scan(std::vector<T>& v) {
for (auto e : v) scan(e);
}
template <std::size_t N = 0, class T> static void scan_tuple_impl(T& v) {
if constexpr (N < std::tuple_size_v<T>) {
scan(std::get<N>(v));
scan_tuple_impl<N + 1>(v);
}
}
template <class... T> static void scan(std::tuple<T...>& v) {
scan_tuple_impl(v);
}
struct Read2DVectorHelper {
std::size_t h, w;
Read2DVectorHelper(std::size_t _h, std::size_t _w) : h(_h), w(_w) {}
template <class T> operator std::vector<std::vector<T>>() {
std::vector vector(h, std::vector<T>(w));
scan(vector);
return vector;
}
};
struct ReadVectorHelper {
std::size_t n;
ReadVectorHelper(std::size_t _n) : n(_n) {}
template <class T> operator std::vector<T>() {
std::vector<T> vector(n);
scan(vector);
return vector;
}
auto operator[](std::size_t m) {
return Read2DVectorHelper(n, m);
}
};
public:
template <class T> T read() const {
T result;
scan(result);
return result;
}
template <class T> auto read(std::size_t n) const {
std::vector<T> result(n);
scan(result);
return result;
}
template <class T> auto read(std::size_t h, std::size_t w) const {
std::vector result(h, std::vector<T>(w));
scan(result);
return result;
}
std::string read_line() const {
std::string v;
for (char c = gc(); c != '\n' && c != '\0'; c = gc()) v += c;
return v;
}
template <class T> operator T() const {
return read<T>();
}
int operator--(int) const {
return read<int>() - 1;
}
auto operator[](std::size_t n) const {
return ReadVectorHelper(n);
}
auto operator[](const std::pair<std::size_t, std::size_t>& nm) const {
return Read2DVectorHelper(nm.first, nm.second);
}
void operator()() const {}
template <class H, class... T> void operator()(H&& h, T&&... t) const {
scan(h);
operator()(std::forward<T>(t)...);
}
private:
template <template <class...> class, class...> struct Column;
template <template <class...> class V, class Head, class... Tail>
struct Column<V, Head, Tail...> {
template <class... Args> using vec = V<std::vector<Head>, Args...>;
using type = typename Column<vec, Tail...>::type;
};
template <template <class...> class V> struct Column<V> { using type = V<>; };
template <class... T> using column_t = typename Column<std::tuple, T...>::type;
template <std::size_t N = 0, class T> void column_impl(T& t) const {
if constexpr (N < std::tuple_size_v<T>) {
auto& vec = std::get<N>(t);
using V = typename std::remove_reference_t<decltype(vec)>::value_type;
vec.push_back(read<V>());
column_impl<N + 1>(t);
}
}
public:
template <class... T> auto column(std::size_t h) const {
column_t<T...> result;
while (h--) column_impl(result);
return result;
}
} in;
#define inputs(T, ...) \
T __VA_ARGS__; \
in(__VA_ARGS__)
#define ini(...) inputs(int, __VA_ARGS__)
#define inl(...) inputs(long long, __VA_ARGS__)
#define ins(...) inputs(std::string, __VA_ARGS__)
#line 5 "/home/yuruhiya/programming/library/Utility/Printer.cpp"
#include <array>
#line 7 "/home/yuruhiya/programming/library/Utility/Printer.cpp"
#include <string_view>
#include <optional>
#include <charconv>
#include <cstring>
#include <cassert>
class Printer {
public:
struct BoolString {
std::string_view t, f;
BoolString(std::string_view _t, std::string_view _f) : t(_t), f(_f) {}
};
struct Separator {
std::string_view div, sep, last;
Separator(std::string_view _div, std::string_view _sep, std::string_view _last)
: div(_div), sep(_sep), last(_last) {}
};
inline static const BoolString Yes{"Yes", "No"}, yes{"yes", "no"}, YES{"YES", "NO"},
Int{"1", "0"}, Possible{"Possible", "Impossible"};
inline static const Separator space{" ", " ", "\n"}, no_space{"", "", "\n"},
endl{"\n", "\n", "\n"}, comma{",", ",", "\n"}, no_endl{" ", " ", ""},
sep_endl{" ", "\n", "\n"};
BoolString bool_str{Yes};
Separator separator{space};
void print(int v) const {
char buf[12]{};
if (auto [ptr, e] = std::to_chars(std::begin(buf), std::end(buf), v);
e == std::errc{}) {
print(std::string_view(buf, ptr - buf));
} else {
assert(false);
}
}
void print(long long v) const {
char buf[21]{};
if (auto [ptr, e] = std::to_chars(std::begin(buf), std::end(buf), v);
e == std::errc{}) {
print(std::string_view(buf, ptr - buf));
} else {
assert(false);
}
}
void print(bool v) const {
print(v ? bool_str.t : bool_str.f);
}
void print(std::vector<bool>::reference v) const {
print(v ? bool_str.t : bool_str.f);
}
void print(char v) const {
putchar_unlocked(v);
}
void print(std::string_view v) const {
fwrite_unlocked(v.data(), sizeof(std::string_view::value_type), v.size(), stdout);
}
void print(double v) const {
std::printf("%.20f", v);
}
void print(long double v) const {
std::printf("%.20Lf", v);
}
template <class T> void print(const T& v) const {
std::cout << v;
}
template <class T, class U> void print(const std::pair<T, U>& v) const {
print(v.first);
print(separator.div);
print(v.second);
}
template <class T> void print(const std::optional<T>& v) const {
print(*v);
}
template <class InputIterater>
void print_range(const InputIterater& begin, const InputIterater& end) const {
for (InputIterater i = begin; i != end; ++i) {
if (i != begin) print(separator.sep);
print(*i);
}
}
template <class T> void print(const std::vector<T>& v) const {
print_range(v.begin(), v.end());
}
template <class T, std::size_t N> void print(const std::array<T, N>& v) const {
print_range(v.begin(), v.end());
}
template <class T> void print(const std::vector<std::vector<T>>& v) const {
for (std::size_t i = 0; i < v.size(); ++i) {
if (i) print(separator.last);
print(v[i]);
}
}
Printer() = default;
Printer(const BoolString& _bool_str, const Separator& _separator)
: bool_str(_bool_str), separator(_separator) {}
Printer& operator()() {
print(separator.last);
return *this;
}
template <class Head> Printer& operator()(Head&& head) {
print(head);
print(separator.last);
return *this;
}
template <class Head, class... Tail> Printer& operator()(Head&& head, Tail&&... tail) {
print(head);
print(separator.sep);
return operator()(std::forward<Tail>(tail)...);
}
template <class... Args> Printer& flag(bool f, Args&&... args) {
if (f) {
return operator()(std::forward<Args>(args)...);
} else {
return *this;
}
}
template <class InputIterator>
Printer& range(const InputIterator& begin, const InputIterator& end) {
print_range(begin, end);
print(separator.last);
return *this;
}
template <class Container> Printer& range(const Container& a) {
range(a.begin(), a.end());
return *this;
}
template <class... T> void exit(T&&... t) {
operator()(std::forward<T>(t)...);
std::exit(EXIT_SUCCESS);
}
Printer& flush() {
fflush_unlocked(stdout);
return *this;
}
Printer& set(const BoolString& _bool_str) {
bool_str = _bool_str;
return *this;
}
Printer& set(const Separator& _separator) {
separator = _separator;
return *this;
}
Printer& set(std::string_view t, std::string_view f) {
bool_str = BoolString(t, f);
return *this;
}
} out;
#line 2 "/home/yuruhiya/programming/library/Utility/functions.cpp"
#include <algorithm>
#include <numeric>
#include <cmath>
#line 8 "/home/yuruhiya/programming/library/Utility/functions.cpp"
template <class T = long long> constexpr T TEN(std::size_t n) {
T result = 1;
for (std::size_t i = 0; i < n; ++i) result *= 10;
return result;
}
template <
class T, class U,
std::enable_if_t<std::is_integral_v<T> && std::is_integral_v<U>, std::nullptr_t> = nullptr>
constexpr auto div_ceil(T n, U m) {
return (n + m - 1) / m;
}
template <class T, class U> constexpr auto div_ceil2(T n, U m) {
return div_ceil(n, m) * m;
}
template <class T> constexpr T triangle(T n) {
return (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);
}
template <class T> constexpr T nC2(T n) {
return (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);
}
template <class T, class U> constexpr auto middle(const T& l, const U& r) {
return l + (r - l) / 2;
}
template <class T, class U, class V>
constexpr bool in_range(const T& v, const U& lower, const V& upper) {
return lower <= v && v < upper;
}
template <class T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
constexpr bool is_square(T n) {
T s = std::sqrt(n);
return s * s == n || (s + 1) * (s + 1) == n;
}
template <class T = long long> constexpr T BIT(int b) {
return T(1) << b;
}
template <class T> constexpr int BIT(T x, int i) {
return (x & (T(1) << i)) ? 1 : 0;
}
template <class T> constexpr int Sgn(T x) {
return (0 < x) - (0 > x);
}
template <class T> bool is_leap(T year) {
return !(year % 4) && (year % 100 || !(year % 400));
}
template <class T, class U, std::enable_if_t<std::is_integral_v<U>, std::nullptr_t> = nullptr>
constexpr T Pow(T a, U n) {
assert(n >= 0);
T result = 1;
while (n > 0) {
if (n & 1) {
result *= a;
n--;
} else {
a *= a;
n >>= 1;
}
}
return result;
}
template <class T, class U, std::enable_if_t<std::is_integral_v<U>, std::nullptr_t> = nullptr>
constexpr T Powmod(T a, U n, T mod) {
assert(n >= 0);
if (a > mod) a %= mod;
T result = 1;
while (n > 0) {
if (n & 1) {
result = result * a % mod;
n--;
} else {
a = a * a % mod;
n >>= 1;
}
}
return result;
}
template <class T> bool chmax(T& a, const T& b) {
return a < b ? a = b, true : false;
}
template <class T> bool chmin(T& a, const T& b) {
return a > b ? a = b, true : false;
}
template <class T> int sz(const T& v) {
return v.size();
}
template <class T, class U> int lower_index(const T& a, const U& v) {
return std::lower_bound(a.begin(), a.end(), v) - a.begin();
}
template <class T, class U> int upper_index(const T& a, const U& v) {
return std::upper_bound(a.begin(), a.end(), v) - a.begin();
}
template <class T, class U = typename T::value_type> U Gcdv(const T& v) {
return std::accumulate(std::next(v.begin()), v.end(), U(*v.begin()), std::gcd<U, U>);
}
template <class T, class U = typename T::value_type> U Lcmv(const T& v) {
return std::accumulate(std::next(v.begin()), v.end(), U(*v.begin()), std::lcm<U, U>);
}
namespace internal {
template <class T, std::size_t N>
auto make_vector(std::vector<int>& sizes, const T& init) {
if constexpr (N == 1) {
return std::vector(sizes[0], init);
} else {
int size = sizes[N - 1];
sizes.pop_back();
return std::vector(size, make_vector<T, N - 1>(sizes, init));
}
}
} // namespace internal
template <class T, std::size_t N>
auto make_vector(const int (&sizes)[N], const T& init = T()) {
std::vector s(std::rbegin(sizes), std::rend(sizes));
return internal::make_vector<T, N>(s, init);
}
namespace lambda {
auto char_to_int = [](char c) {
return c - '0';
};
auto lower_to_int = [](char c) {
return c - 'a';
};
auto upper_to_int = [](char c) {
return c - 'A';
};
auto int_to_char = [](int i) -> char {
return '0' + i;
};
auto int_to_lower = [](int i) -> char {
return 'a' + i;
};
auto int_to_upper = [](int i) -> char {
return 'A' + i;
};
auto is_odd = [](auto n) {
return n % 2 == 1;
};
auto is_even = [](auto n) {
return n % 2 == 0;
};
auto is_positive = [](auto n) {
return n > 0;
};
auto is_negative = [](auto n) {
return n < 0;
};
auto increment = [](auto n) {
return ++n;
};
auto decrement = [](auto n) {
return --n;
};
auto self = [](const auto& n) {
return n;
};
auto first = [](const auto& n) {
return n.first;
};
auto second = [](const auto& n) {
return n.second;
};
template <class T> auto cast() {
return [](const auto& n) {
return static_cast<T>(n);
};
};
template <class T> auto equal_to(const T& x) {
return [x](auto y) {
return x == y;
};
}
template <std::size_t I> auto get() {
return [](const auto& n) {
return std::get<I>(n);
};
}
template <class F> auto cmp(F&& f) {
return [f](const auto& a, const auto& b) {
return f(a) < f(b);
};
}
} // namespace lambda
#line 6 "/home/yuruhiya/programming/library/template_no_Ruby.cpp"
#if __has_include(<library/dump.hpp>)
#include <library/dump.hpp>
#define LOCAL
#else
#define dump(...) ((void)0)
#define dump2(...) ((void)0)
#endif
#line 2 "/home/yuruhiya/programming/library/Utility/oj_local.cpp"
template <class T> constexpr T oj_local(const T& oj, const T& local) {
#ifndef LOCAL
return oj;
#else
return local;
#endif
}
#line 14 "/home/yuruhiya/programming/library/template_no_Ruby.cpp"
#include <bits/stdc++.h>
#line 1 "/home/yuruhiya/programming/library/atcoder/lazysegtree.hpp"
#line 1 "/home/yuruhiya/programming/library/atcoder/internal_bit.hpp"
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n))
x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#line 9 "/home/yuruhiya/programming/library/atcoder/lazysegtree.hpp"
namespace atcoder {
template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S),
F (*composition)(F, F), F (*id)()>
struct lazy_segtree {
public:
lazy_segtree() : lazy_segtree(0) {}
lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S operator[](int p) {
return get(p);
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push(r >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S operator()(int l, int r) {
return prod(l, r);
}
S all_prod() {
return d[1];
}
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)> int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G> int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)> int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G> int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
std::vector<S> to_a() {
std::vector<S> res(_n);
for (int i = 0; i < _n; ++i) {
res[i] = get(i);
}
return res;
}
private:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
void update(int k) {
d[k] = op(d[2 * k], d[2 * k + 1]);
}
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
} // namespace atcoder
#line 5 "/home/yuruhiya/programming/library/DataStructure/LazySegmentTree.cpp"
namespace internal {
template <class T> struct S_sum {
T value, size;
S_sum(T v, T s = 1) : value(v), size(s) {}
};
template <class S> constexpr S constant_min() {
return std::numeric_limits<S>::min();
}
template <class S> constexpr S constant_max() {
return std::numeric_limits<S>::max();
}
template <class S> constexpr S constant_zero() {
return static_cast<S>(0);
}
template <class T> constexpr S_sum<T> constant_zero_sum() {
return {0, 0};
}
template <class S> constexpr S op_max(S x, S y) {
return std::max(x, y);
}
template <class S> constexpr S op_min(S x, S y) {
return std::min(x, y);
}
template <class T> constexpr S_sum<T> op_sum(S_sum<T> x, S_sum<T> y) {
return {x.value + y.value, x.size + y.size};
}
template <class S, class F> constexpr S mapping_add(F f, S x) {
return f + x;
}
template <class T, class F> constexpr S_sum<T> mapping_add_sum(F f, S_sum<T> x) {
return {x.value + f * x.size, x.size};
}
template <class S, class F> constexpr S mapping_update(F f, S x) {
return f == constant_max<F>() ? x : f;
}
template <class T, class F> constexpr S_sum<T> mapping_update_sum(F f, S_sum<T> x) {
if (f != constant_max<F>()) x.value = f * x.size;
return x;
}
template <class F> constexpr F composition_add(F f, F g) {
return f + g;
}
template <class F> constexpr F composition_update(F f, F g) {
return f == constant_max<F>() ? g : f;
}
} // namespace internal
using internal::S_sum;
template <class S, class F>
using RangeAddRangeMax =
atcoder::lazy_segtree<S, internal::op_max<S>, internal::constant_min<S>, F,
internal::mapping_add<S, F>, internal::composition_add<F>,
internal::constant_zero<F>>;
template <class S, class F>
using RangeAddRangeMin =
atcoder::lazy_segtree<S, internal::op_min<S>, internal::constant_max<S>, F,
internal::mapping_add<S, F>, internal::composition_add<F>,
internal::constant_zero<F>>;
template <class T, class F>
using RangeAddRangeSum =
atcoder::lazy_segtree<internal::S_sum<T>, internal::op_sum<T>,
internal::constant_zero_sum<T>, F, internal::mapping_add_sum<T, F>,
internal::composition_add<F>, internal::constant_zero<F>>;
template <class S, class F>
using RangeUpdateRangeMax =
atcoder::lazy_segtree<S, internal::op_max<S>, internal::constant_min<S>, F,
internal::mapping_update<S, F>, internal::composition_update<F>,
internal::constant_max<F>>;
template <class S, class F>
using RangeUpdateRangeMin =
atcoder::lazy_segtree<S, internal::op_min<S>, internal::constant_max<S>, F,
internal::mapping_update<S, F>, internal::composition_update<F>,
internal::constant_max<F>>;
template <class T, class F>
using RangeUpdateRangeSum =
atcoder::lazy_segtree<internal::S_sum<T>, internal::op_sum<T>,
internal::constant_zero_sum<T>, F,
internal::mapping_update_sum<T, F>, internal::composition_update<F>,
internal::constant_max<F>>;
#line 3 "a.cpp"
using namespace std;
int main() {
int n = in;
VL t = in[n - 1];
rep(i, n - 1) t[i] += (n - i - 1) * 3;
RangeAddRangeMax<ll, ll> seg(t);
for (int m = in; m--;) {
int l = in--, r = in;
ll d = in;
seg.apply(l, r, d);
out(seg.all_prod());
}
}
yuruhiya