結果
問題 | No.1447 Greedy MtSaka |
ユーザー | hamray |
提出日時 | 2021-04-02 18:57:38 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 15,371 bytes |
コンパイル時間 | 2,560 ms |
コンパイル使用メモリ | 194,128 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-12-23 15:17:46 |
合計ジャッジ時間 | 3,673 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,820 KB |
testcase_06 | AC | 2 ms
6,820 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,820 KB |
testcase_09 | AC | 2 ms
6,820 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,816 KB |
testcase_12 | AC | 2 ms
6,820 KB |
testcase_13 | AC | 2 ms
6,820 KB |
testcase_14 | AC | 2 ms
6,816 KB |
testcase_15 | AC | 3 ms
6,816 KB |
testcase_16 | AC | 2 ms
6,816 KB |
testcase_17 | AC | 2 ms
6,816 KB |
testcase_18 | AC | 2 ms
6,820 KB |
testcase_19 | AC | 2 ms
6,820 KB |
コンパイルメッセージ
main.cpp: In function 'bool intersect(const Line&, const Segment&)': main.cpp:316:1: warning: no return statement in function returning non-void [-Wreturn-type] 316 | } | ^
ソースコード
#include <bits/stdc++.h> using namespace std; typedef vector<int> VI; typedef vector<VI> VVI; typedef vector<string> VS; typedef pair<int, int> PII; typedef pair<int, int> pii; typedef pair<long long, long long> PLL; typedef pair<int, PII> TIII; typedef long long ll; typedef long double ld; typedef unsigned long long ull; #define FOR(i, s, n) for (int i = s; i < (int)n; ++i) #define REP(i, n) FOR(i, 0, n) #define rep(i, a, b) for (int i = a; i < (b); ++i) #define trav(a, x) for (auto &a : x) #define all(x) x.begin(), x.end() #define MOD 1000000007 template<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;} template<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;} const double EPS = 1e-12, PI = acos(-1); const double pi = 3.141592653589793238462643383279; typedef string::const_iterator State; ll GCD(ll a, ll b){ return (b==0)?a:GCD(b, a%b); } ll LCM(ll a, ll b){ return a/GCD(a, b) * b; } template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< 998244353 >; template< typename T > struct Combination { vector< T > _fact, _rfact, _inv; Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) { _fact[0] = _rfact[sz] = _inv[0] = 1; for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i; _rfact[sz] /= _fact[sz]; for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1); for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1]; } inline T fact(int k) const { return _fact[k]; } inline T rfact(int k) const { return _rfact[k]; } inline T inv(int k) const { return _inv[k]; } T P(int n, int r) const { if(r < 0 || n < r) return 0; return fact(n) * rfact(n - r); } T C(int p, int q) const { if(q < 0 || p < q) return 0; return fact(p) * rfact(q) * rfact(p - q); } T H(int n, int r) const { if(n < 0 || r < 0) return (0); return r == 0 ? 1 : C(n + r - 1, r); } }; ll modpow(ll x, ll n, ll mod) { ll res = 1; while(n) { if(n&1) res = (res * x) % mod; x = (x * x) % mod; n >>= 1; } return res; } #include <bits/stdc++.h> using namespace std; using Point = complex< double >; bool eq(double a, double b){ return fabs(a-b) < EPS; } namespace std { bool operator<(const Point a, const Point b) { if(eq(a.real(),b.real())) return a.imag() < b.imag(); return a.real() < b.real(); } } istream &operator>> (istream &is, Point &p) { double a, b; is >> a >> b; p = Point(a, b); return is; } ostream &operator<< (ostream &os, Point &p) { return os << fixed << setprecision(10) << p.real() << " " << p.imag(); } bool operator<(const Point &a, const Point &b) { return a.real() != b.real() ? a.real() < b.real() : a.imag() < b.imag(); } // rotate Φ(rad) // x = r * cos(θ + Φ) // = r * cos(θ) * cos(Φ) - r * sin(θ) * sin(Φ) // = x * cos(Φ) - y * sin(Φ) (∵ cos(θ) = x/r, sin(θ) = y/r) Point rotate(double phi, const Point &p) { double x = p.real(), y = p.imag(); return Point(x * cos(phi) - y * sin(phi), x * sin(phi) + y * cos(phi)); } double radian_to_degree(double r) { return (r * 180.0 / PI); } double degree_to_radian(double d) { return (d * PI / 180.0); } struct Line{ Point a, b; Line() = default; Line(Point a, Point b) : a(a), b(b){} Line(double A, double B, double C){ //ax + by = c if(eq(A, 0)){ a = Point(0, C/B), b = Point(1, C/B); }else if(eq(B, 0)){ a = Point(C/A, 0), b = Point(C/A, 1); }else{ a = Point(0, C/B), b = Point(C/A, 0); } } friend istream &operator>>(istream &is, Line &a) { return is >> a.a >> a.b; } friend ostream &operator<<(ostream &os, Line &a) { return os << a.a << " to " << a.b; } }; struct Segment: Line { Segment() = default; Segment(Point a, Point b) : Line(a, b) {} }; struct Circle { Point p; double r; Circle() = default; Circle(Point p, double r): p(p), r(r){} }; using Points = vector<Point>; using Polygon = vector<Point>; using Segments = vector<Segment>; using Lines = vector<Line>; using Circles = vector<Circle>; double cross(const Point &a, const Point &b) { return a.real() * b.imag() - a.imag() * b.real(); } double dot(const Point& a, const Point &b) { return a.real() * b.real() + a.imag() * b.imag(); } //https://mathtrain.jp/projection Point projection(const Line &l, const Point &p){ double t = dot(p - l.a, l.a-l.b) / norm(l.a - l.b); return l.a + (l.a - l.b) * t; } Point projection(const Segment &l, const Point &p){ double t = dot(p - l.a, l.b-l.a) / norm(l.a - l.b); return l.a + (l.b - l.a) * t; } Point reflection(const Line &l, const Point &p){ return p + (projection(l, p) - p) * 2.0; } int ccw(const Point &a, const Point &b, const Point &c) { if(cross(b-a, c-a) > EPS) return 1; // "COUNTER_CLOCKWISE" if(cross(b-a, c-a) < -EPS) return -1; // "CLOCKWISE" if(dot(b-a, c-a) < -EPS) return 2; // "ONLINE_BACK" c-a-b if(norm(b-a) < norm(c-a) - EPS) return -2; // "ONLINE_FRONT" a-b-c return 0; // "ON_SEGMENT" a-c-b } bool parallel(const Line &a, const Line &b){ return eq(cross(a.a-a.b, b.a-b.b), 0.0); } bool orthogonal(const Line &a, const Line &b){ return eq(dot(a.a-a.b, b.a-b.b), 0.0); } enum { OUT, ON, IN }; int contains(const Polygon& Q, const Point& p){ bool in = false; for(int i=0; i<Q.size(); i++){ Point a = Q[i] - p, b = Q[(i+1)%Q.size()]-p; if(a.imag() > b.imag()) swap(a, b); if(a.imag() <= 0 && 0 < b.imag() && cross(a, b) < 0) in = !in; if(cross(a, b) == 0 && dot(a, b) <= 0) return ON; } return in ? IN : OUT; } bool intersect(const Segment &s, const Point &p){ return ccw(s.a, s.b, p) == 0; } //直線の交差判定 bool intersect(const Line &a, const Line &b) { if(parallel(a, b)) return 0; return 1; } //線分が重なる/端点で交わるときtrue bool intersect(const Segment &a, const Segment &b) { return ccw(a.a, a.b, b.a) * ccw(a.a, a.b, b.b) <= 0 && ccw(b.a, b.b, a.a) * ccw(b.a, b.b, a.b) <= 0; } bool intersect(const Line &l, const Segment &s) { } Point crosspoint(const Line &a, const Line &b){ double d = cross(b.b-b.a, a.b-a.a); if(eq(d, 0.0)) return Point(1e9, 1e9); return a.a + (a.b - a.a) * cross(b.b-b.a, b.b-a.a) / d; } Point crosspoint(const Segment &a, const Segment &b){ return crosspoint(Line(a.a, a.b), Line(b.a, b.b)); } double distance(const Point &a, const Point &b){ return abs(a - b); } double distance(const Line &l, const Point &p){ return abs( cross(p - l.a, l.b-l.a) / abs(l.b-l.a) ); } double distance(const Segment &s, const Point &p){ Point r = projection(s, p); if(intersect(s, r)) return abs(r-p); return min(abs(s.a - p), abs(s.b - p)); } // double distance(const Line &a, const Line &b){ // } // double distance(const Line &a, const Segment &b){ // } double distance(const Segment &a, const Segment &b) { return intersect(a, b) ? 0 : min({distance(a, b.a), distance(a, b.b), distance(b, a.a), distance(b, a.b)}); } /* 2円の交点 */ vector<Point> crosspointCC(Circle C1, Circle C2){ vector<Point> ps; Point ab = C2.p - C1.p; double d = abs(ab); double rc = (C1.r * C1.r + d * d - C2.r * C2.r) / (2 * d); if(eq(d, 0) || C1.r < abs(rc)) return ps; double rs = sqrt(C1.r * C1.r - rc*rc); Point abN = ab * Point(0, rs/d); Point cp = C1.p + rc / d * ab; ps.push_back(cp + abN); if(!eq(norm(abN), 0))ps.push_back(cp-abN); return ps; } vector<Point> crosspointCL(Circle C, Line l){ Point p = projection(l, C.p); Point e = (l.b-l.a)/abs(l.b-l.a); if(eq(distance(l, C.p), C.r)) { return vector<Point>{p, p}; } double base = sqrt(C.r*C.r-norm(p-C.p)); return vector<Point>{p+e*base, p-e*base}; } /* 円同士の共通部分の面積を求める */ // verify: http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_I date: 2020/10/11 long double AreaofCC(Circle& C1, Circle& C2){ if(C1.r > C2.r) swap(C1, C2); long double nor = norm(C1.p - C2.p); long double dist = sqrtl(nor); if(C1.r + C2.r < dist+EPS) return 0; if(dist + C1.r < C2.r + EPS) return C1.r * C1.r * PI; long double theta1 = acosl((nor + C1.r*C1.r - C2.r * C2.r)/(2*C1.r*dist)); long double theta2 = acosl((nor + C2.r*C2.r - C1.r * C1.r)/(2*C2.r*dist)); return (theta1 - sinl(theta1+ theta1) *0.5) * C1.r * C1.r + (theta2 - sinl(theta2+theta2) *0.5) * C2.r * C2.r; } Polygon convex_hull(Polygon &p) { int n = (int)p.size(), k = 0; if (n <= 2) return p; sort(p.begin(), p.end()); vector<Point> ch(n * 2); for (int i = 0; i < n; ch[k++] = p[i++]) { while (k >= 2 && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < 0) --k; } for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) { while (k >= t && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < 0) --k; } ch.resize(k - 1); return ch; } double convex_diameter(const Polygon &p) { int n = (int)p.size(); if (n == 2) return abs(p[0] - p[1]); int is = 0, js = 0; for (int i = 1; i < n; ++i) { if (imag(p[i]) > imag(p[is])) is = i; if (imag(p[i]) < imag(p[js])) js = i; } double res = abs(p[is] - p[js]); int i, maxi, j, maxj; i = maxi = is; j = maxj = js; do { if (cross(p[(i + 1) % n] - p[i], p[(j + 1) % n] - p[j]) >= 0) j = (j + 1) % n; else i = (i + 1) % n; res = max(res, abs(p[i] - p[j])); } while (i != is || j != js); return res; } Polygon convex_cut(const Polygon &p, const Line l) { Polygon ret; for (int i = 0; i < p.size(); ++i) { Point now = p[i], nxt = p[(i + 1) % p.size()]; if (ccw(l.a, l.b, now) != -1) //交点が線分l上にあるとき ret.push_back(now); if (ccw(l.a, l.b, now) * ccw(l.a, l.b, nxt) < 0) { ret.push_back(crosspoint(Line(now, nxt), l)); } } return (ret); } double closestpair(Points &a, int l, int r){ if(r-l<=1) return 1e20; int mid = (l+r)/2; double X = a[mid].real(); double d = min(closestpair(a, l, mid), closestpair(a, mid, r)); inplace_merge(a.begin()+l, a.begin()+mid, a.begin()+r, [](const Point& pa, const Point& pb){ return pa.imag() < pb.imag(); }); Points b; for(int i=l; i<r; i++){ if(abs(a[i].real()-X) >= d) continue; for(int j=b.size()-1; j>=0; j--){ if(abs((a[i]-b[j]).imag()) >= d) break; d = min(d, abs(a[i]-b[j])); } b.push_back(a[i]); } return d; } /* 円の交差判定 */ /* verify: http://judge.u-aizu.ac.jp/onlinejudge/finder.jsp?course=CGL date:2020/10/11 */ int intersectionCC(Circle c1, Circle c2){ if(c1.r > c2.r) swap(c1, c2); double d1 = abs(c1.p-c2.p); double d2 = c1.r + c2.r; if(d1 > d2) return 4; /* 互いに交点を持たない */ else if(d1 == d2) return 3; /* 外接する場合 */ else{ if(c2.r == c1.r + d1) return 1; /* 内接する場合 */ else if(c2.r > c1.r + d1) return 0; /* 包含 */ else return 2; /* 交点を2つ持つ */ } } /* 点集合が反時計回りに与えられる場合のみ */ double Area(Points &g){ double res = 0; int n = g.size(); REP(i,n){ res += cross(g[i], g[(i+1)%n]); } return res/2.0; } /* 内接円 */ /* verify: http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_B&lang=ja date: 2020/10/11 */ pair<Point, double> incircle_of_a_Triangle(Points &p){ double a = abs(p[1]-p[2]), b = abs(p[2]-p[0]), c = abs(p[0]-p[1]); double s = (a+b+c) / 2.0; double S = sqrtl(s*(s-a)*(s-b)*(s-c)); double r = S/s; Point pp = (a*p[0]+b*p[1]+c*p[2])/(a+b+c); return make_pair(pp, r); } /* 外接円 */ pair<Point, double> circumscribed_circle_of_a_triangle(Points &p){ Point m1((p[0]+p[1])/2.0), m2((p[1]+p[2])/2.0); Point v((p[1]-p[0]).imag(), (p[0]-p[1]).real()), w((p[1]-p[2]).imag(), (p[2]-p[1]).real()); Line l1(m1, Point(v+m1)), l2(m2, Point(w+m2)); Point x = crosspoint(l1, l2); double r = abs(x-p[0]); return make_pair(x, r); } /* ある点pを通る円cの接線 */ Points tangent_to_a_circle(Point p, Circle C){ Points ps; double d = abs(C.p-p); if(eq(d,0)){ ps.push_back(p); }else if(d>EPS){ double d2 = sqrt(d*d-C.r*C.r); long double theta = acosl(d2/d); //cout << theta << endl; Point pp = C.p - p; Point p2 = rotate(-theta, pp); Point e = p2/abs(p2); Point ppp = e*d2; ps.push_back(p + ppp); p2 = rotate(theta, pp); e = p2/abs(p2); ppp = e*d2; ps.push_back(p + ppp); } return ps; } Lines tangent(Circle C1, Circle C2){ Lines ls; if(C1.r < C2.r) swap(C1, C2); double d = norm(C1.p - C2.p); if(eq(d, 0)) return ls; Point u = (C2.p - C1.p) / sqrt(d); Point v = rotate(pi/2, u); for(double s: {-1, 1}) { double h = (C1.r + s * C2.r) / sqrt(d); if(eq(1-h*h, 0)) { ls.emplace_back(C1.p + u * C1.r, C1.p + (u+v) * C1.r); }else if(1-h*h>0){ Point uu = u*h, vv = v*sqrt(1-h*h); ls.emplace_back(C1.p + (uu+vv) * C1.r, C2.p - (uu+vv) * C2.r * s); ls.emplace_back(C1.p + (uu-vv) * C1.r, C2.p - (uu-vv) * C2.r * s); } } return ls; } Line bisector(Point a, Point b){ Point A = (a+b)*Point(0.5, 0); return Line(A, A+(b-a)*Point(0, PI/2)); } Polygon voronoi_cell(Polygon Q, Points P, int s){ REP(i,P.size()){ if(i!=s){ Q = convex_cut(Q, bisector(P[s], P[i])); } } return Q; } int main() { cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(12); int N; cin >> N; Polygon p(N); REP(i,N) cin >> p[i]; cout << (ll)(Area(p)*2.0) << endl; return 0; }