結果
問題 | No.1463 Hungry Kanten |
ユーザー | 👑 Nachia |
提出日時 | 2021-04-02 22:35:33 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 563 ms / 2,000 ms |
コード長 | 13,410 bytes |
コンパイル時間 | 3,038 ms |
コンパイル使用メモリ | 215,672 KB |
実行使用メモリ | 32,384 KB |
最終ジャッジ日時 | 2024-12-23 23:39:32 |
合計ジャッジ時間 | 5,243 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 23 ms
5,248 KB |
testcase_03 | AC | 428 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 563 ms
32,384 KB |
testcase_06 | AC | 1 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 1 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 3 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 6 ms
5,248 KB |
testcase_15 | AC | 3 ms
5,248 KB |
testcase_16 | AC | 20 ms
5,248 KB |
testcase_17 | AC | 62 ms
7,168 KB |
testcase_18 | AC | 19 ms
5,248 KB |
testcase_19 | AC | 277 ms
18,048 KB |
testcase_20 | AC | 398 ms
20,992 KB |
testcase_21 | AC | 2 ms
5,248 KB |
コンパイルメッセージ
main.cpp: In function 'basic_fixed_decimal::my_type& basic_fixed_decimal::operator/=(const my_type&)': main.cpp:308:50: warning: 'void* __builtin_memmove(void*, const void*, long unsigned int)' writing 64 bytes into a region of size 56 overflows the destination [-Wstringop-overflow=] 308 | for(int j=array_size-1; j>=0; j--) buf[j+1]=buf[j]; main.cpp:302:17: note: at offset 8 into destination object 'buf' of size 64 302 | number_type buf; buf.fill(0); | ^~~
ソースコード
#include<array> #include<string> #include<iostream> #include<sstream> #include<iomanip> #include<algorithm> #include<assert.h> #include<math.h> template<class data_type, class idx_type, data_type g, idx_type max_idx> class base_power_class{ public: data_type data[max_idx+1]; constexpr base_power_class() : data() { data[0]=1; for(idx_type i=0; i<max_idx; i++) data[i+1]=data[i]*g; } constexpr data_type operator[](int idx) const { return data[idx]; } }; class basic_fixed_decimal{ public: using digit_type = unsigned long long; using index_type = int; using sign_type = bool; using my_type = basic_fixed_decimal; static constexpr digit_type min_base = 10; static constexpr int base_size = 8; static constexpr auto base_power = base_power_class<digit_type,index_type,min_base,base_size>(); static constexpr digit_type base = base_power[base_size]; static constexpr index_type decimal_size = 0; static constexpr index_type integer_size = 8; static constexpr sign_type sign_pos = false; static constexpr sign_type sign_neg = true; static constexpr int array_size = decimal_size + integer_size; using number_type = std::array<digit_type,array_size>; static const my_type PI; static const my_type NAPIER; number_type D; sign_type sign; // O(N) (N=precision) basic_fixed_decimal(){ D.fill(0); sign=sign_pos; } // O(N) (N=precision) basic_fixed_decimal(const std::string& S){ D.fill(0); sign=sign_pos; assert(S.size()!=0); std::size_t beginpos=0; if(S[0]=='-'){ beginpos++; sign=sign_neg; } std::size_t pointpos=S.find('.',beginpos); if(pointpos==std::string::npos) pointpos=S.size(); assert(beginpos<pointpos); assert(integer_size*base_size>=pointpos-beginpos); // 整数部の桁数を超過 for(int i=beginpos; i<pointpos; i++){ assert('0'<=S[i] && S[i]<='9'); digit_type d = S[i]-'0'; index_type digit_idx = decimal_size*base_size+(pointpos-1-i); D[digit_idx/base_size] += d * base_power[digit_idx%base_size]; } if(pointpos!=S.size()) assert(pointpos+1<S.size()); for(int i=pointpos+1; i<S.size(); i++){ assert('0'<=S[i] && S[i]<='9'); if(i-pointpos>decimal_size*base_size) continue; // 精度の外をカット digit_type d = S[i]-'0'; index_type digit_idx = decimal_size*base_size+(pointpos-i); D[digit_idx/base_size] += d * base_power[digit_idx%base_size]; } } // O(N) (N=precision) basic_fixed_decimal(double val){ assert(val<2.0*std::pow((double)base,integer_size)); std::string buf; std::ostringstream sstr(buf); sstr<<std::fixed<<std::setprecision(decimal_size)<<val<<std::flush; *this = my_type(sstr.str()); } // O(1) digit_type operator[](index_type idx) const { assert(-decimal_size*base_size <= idx && idx < integer_size*base_size); idx += decimal_size*base_size; return D[idx/base_size]/base_power[idx%base_size]%min_base; } // O(N) (N=precision) std::string to_string() const { std::string buf; buf.reserve(array_size*base_size+4); bool decimal_hit=false; for(int i=-decimal_size*base_size; i<0; i++){ if(decimal_hit){ buf.push_back(char(operator[](i)+'0')); } else if(operator[](i)!=0){ decimal_hit=true; buf.push_back(char(operator[](i)+'0')); } } if(decimal_hit) buf.push_back('.'); auto integer_hit=buf.size(); for(int i=0; i<integer_size*base_size; i++){ buf.push_back(char(operator[](i)+'0')); if(operator[](i)!=0) integer_hit=buf.size(); } buf.resize(integer_hit); if(sign==sign_neg) if(!is_zero()) buf.push_back('-'); std::reverse(buf.begin(),buf.end()); return std::string(buf); } // O(N) (N=precision) static bool cmp_unsigned(const number_type& l,const number_type& r){ for(index_type i=array_size-1; i>=0; i--){ if(l[i]!=r[i]) return l[i]<r[i]; } return false; } // O(N) (N=precision) static bool add_unsigned(number_type& dst,const number_type& l,const number_type& r){ digit_type overflow=0; for(index_type i=0; i<array_size; i++){ digit_type d = l[i]+r[i]+overflow; overflow=0; if(d>=base){ overflow=1; d-=base; } dst[i]=d; } return overflow!=0; } // O(N) (N=precision) static bool subtract_unsigned(number_type& dst,const number_type& l,const number_type& r){ digit_type underflow=0; for(index_type i=0; i<array_size; i++){ digit_type d = l[i]+base-r[i]-underflow; underflow=1; if(d>=base){ underflow=0; d-=base; } dst[i]=d; } return underflow!=0; } // O(N^2) (N=precision) static sign_type multiply_sign(sign_type l,sign_type r){ return (l || r) && !(l && r); // l xor r } // O(N) (N=precision) static bool add_lsb_unsigned(number_type& dst){ for(int i=0; i<array_size; i++){ dst[i]++; if(dst[i]<base) return false; dst[i]=0; } return true; } // O(N) (N=precision) static bool half_unsigned(number_type& dst){ bool res = dst[0]%2==1; dst[0]/=2; for(int i=1; i<array_size; i++){ if(dst[i]%2==1) dst[i-1]+=base/2; dst[i]/=2; } return res; } // O(N) (N=precision) static digit_type digit_multyply_unsigned(number_type& dst,const number_type& l,digit_type r){ digit_type overflow = 0; for(int i=0; i<array_size; i++){ overflow+=l[i]*r; dst[i]=overflow%base; overflow/=base; } return overflow; } // O(1) void set_digit(index_type idx,digit_type digit){ assert(0 <= digit && digit < min_base); idx += decimal_size*base_size; auto& tg = D[idx/base_size]; auto d = base_power[idx%base_size]; tg = (tg/d/min_base*min_base+digit)*d; } // O(1) digit_type get_digit(index_type idx){ return operator[](idx); } // O(N) (N=precision) my_type operator-() const { my_type buf = *this; buf.sign = !buf.sign; return buf; } // O(N) (N=precision) my_type& operator+=(const my_type& r){ my_type buf; if(sign == r.sign){ bool overflow = add_unsigned(buf.D,D,r.D); buf.sign=sign; assert(!overflow); } else{ if(cmp_unsigned(D,r.D)){ bool underflow = subtract_unsigned(buf.D,r.D,D); buf.sign=r.sign; assert(!underflow); } else{ bool underflow = subtract_unsigned(buf.D,D,r.D); buf.sign=sign; assert(!underflow); } } *this=buf; return *this; } // O(N) (N=precision) my_type& operator-=(const my_type& r){ return operator+=(-r); } // O(N^2) (N=precision) my_type& operator*=(const my_type& r){ std::array<digit_type,array_size*2> buf; buf.fill(0); for(int i=0; i<array_size; i++){ digit_type overflow = 0; for(int j=0; j<array_size; j++){ overflow += D[i] * r.D[j] + buf[i+j]; buf[i+j] = overflow % base; overflow /= base; } buf[i+array_size] = overflow; } for(int i=decimal_size*2+integer_size; i<array_size*2; i++){ assert(buf[i]==0); } sign = multiply_sign(sign,r.sign); for(int i=0; i<array_size; i++) D[i]=buf[decimal_size+i]; if(buf[decimal_size-1]>=base/2) assert(!add_lsb_unsigned(D)); return *this; } // O(N) (N=precision) my_type operator+(const my_type& r) const { my_type buf=*this; buf+=r; return buf; } // O(N) (N=precision) my_type operator-(const my_type& r) const { my_type buf=*this; buf-=r; return buf; } // O(N^2) (N=precision) my_type operator*(const my_type& r) const { my_type buf=*this; buf*=r; return buf; } // O(N^2) (N=precision) my_type operator/(const my_type& r) const { my_type buf=*this; buf/=r; return buf; } // O(N) (N=precision) bool operator<(const my_type& r) const { if(sign==sign_pos && r.sign==sign_neg) return false; if(sign==sign_neg && r.sign==sign_pos) return true; if(sign==sign_pos) return cmp_unsigned(D,r.D); return cmp_unsigned(r.D,D); } // O(N) (N=precision) bool operator>(const my_type& r) const { return r < *this; } // O(N) (N=precision) bool operator<=(const my_type& r) const { return !(r < *this); } // O(N) (N=precision) bool operator>=(const my_type& r) const { return !(*this < r); } // O(N) (N=precision) bool operator==(const my_type& r) const { if((sign || r.sign) && !(sign && r.sign)) return false; return D == r.D; } // O(N) (N=precision) bool operator!=(const my_type& r) const { return !(*this==r); } // O(N^2 log y) (N=precision) my_type pow(unsigned long long y) const { if(y==0){ my_type res; res.set_digit(0,1); return res; } if(y==1) return *this; my_type res = pow(y/2); res *= res; if(y%2) res *= *this; return res; } // O(N) (N=precision) bool is_zero() const { for(int i=0; i<array_size; i++) if(D[i]!=0) return false; return true; } // O(N^2) (N=precision) my_type& operator/=(const my_type& r){ assert(!r.is_zero()); if(is_zero()) return *this; my_type res; number_type buf; buf.fill(0); digit_type msb_base=1; while(msb_base<base) msb_base=(msb_base<<1)|(digit_type)1; msb_base&=~(msb_base>>1); digit_type overflow=0; for(int i=array_size+decimal_size-1; i>=0; i--){ overflow = buf[array_size-1]; for(int j=array_size-1; j>=0; j--) buf[j+1]=buf[j]; if(i>=decimal_size) buf[0]=D[i-decimal_size]; digit_type digit=0; for(digit_type t=msb_base; t; t>>=1){ number_type t_rD; digit_type bufoverflow=digit_multyply_unsigned(t_rD,r.D,t); while((overflow>bufoverflow)?true:(overflow==bufoverflow && !cmp_unsigned(buf,t_rD))){ number_type bufbuf; overflow -= bufoverflow; if(subtract_unsigned(bufbuf,buf,t_rD)) overflow--; buf = bufbuf; digit+=t; } } if(i>=array_size) assert(digit==0); else res.D[i]=digit; } number_type lsbbuf=r.D; half_unsigned(lsbbuf); if(cmp_unsigned(lsbbuf,buf)) assert(!add_lsb_unsigned(res.D)); res.sign = multiply_sign(sign,r.sign); return *this = res; } // O(N) (N=precision) my_type abs() const { return (sign==sign_pos) ? *this : -*this; } // O(N) (N=precision) my_type floor() const { my_type res=*this; bool hit_digit=false; for(int i=0; i<decimal_size; i++){ hit_digit=res.D[i]!=0; res.D[i]=0; } if(sign==sign_neg) if(hit_digit) res+=my_type("-1"); return res; } // O(N) (N=precision) my_type ceil() const { my_type res=*this; res.sign=!res.sign; res=res.floor(); res.sign=!res.sign; return res; } // O(N^2) (N=precision) my_type mod(my_type div) const { return *this - (*this / div).floor() * div; } // O(N^3) (N=precision) my_type exp() const { my_type intidx = floor(); my_type x = *this - intidx; my_type buf = 1; my_type res = 0; for(int i=0; !buf.is_zero(); i++){ res += buf; buf *= x; buf /= (i+1); } while(!intidx.is_zero()) buf *= NAPIER; return res; } // O(N^3) (N=precision) my_type cos() const { my_type x = mod(PI * my_type(2)); my_type buf = 1; my_type res = 0; for(int i=0; !buf.is_zero(); i+=2){ res += buf; buf *= -x*x; buf /= (i+1)*(i+2); } return res; } // O(N^3) (N=precision) my_type sin() const { my_type x = mod(PI * my_type(2)); my_type buf = x; my_type res = 0; for(int i=1; !buf.is_zero(); i+=2){ res += buf; buf *= -x*x; buf /= (i+1)*(i+2); } return res; } // O(N^3) (N=precision) my_type atan() const { if(my_type("0.5") < *this) return PI/4.0+((*this-1)/(*this+1)).atan(); if(my_type("2.4") < *this) return PI/2.0-(my_type("1") / *this).atan(); my_type x = -*this * *this; my_type buf = *this; my_type res = 0; for(int i=1; !buf.is_zero(); i+=2){ res += buf / i; buf *= x; } return res; } sign_type get_sign() const { return sign; } number_type get_digits() const { return D; } }; const basic_fixed_decimal::my_type basic_fixed_decimal::PI = (basic_fixed_decimal("0.2").atan() * 4.0 - (basic_fixed_decimal("1") / basic_fixed_decimal("239")).atan()) * 4.0; const basic_fixed_decimal::my_type basic_fixed_decimal::NAPIER = basic_fixed_decimal("0.5").exp().pow(2); constexpr base_power_class<basic_fixed_decimal::digit_type,basic_fixed_decimal::index_type,basic_fixed_decimal::min_base,basic_fixed_decimal::base_size> basic_fixed_decimal::base_power; std::ostream& operator<<(std::ostream& ostr,const basic_fixed_decimal& a){ return ostr<<a.to_string(); } std::istream& operator>>(std::istream& istr,basic_fixed_decimal& a){ std::string buf; istr>>buf; if(!istr.good()) return istr; a = basic_fixed_decimal(buf); return istr; } using fixdec=basic_fixed_decimal; #include <bits/stdc++.h> using namespace std; using ll=long long; using ull=unsigned long long; #define rep(i,n) for(int i=0; i<(n); i++) int N,K; fixdec X[18]; set<fixdec> S; int popcount(int x){ int res=0; rep(d,18) res+=(x>>d)&1; return res; } int main(){ cin>>N>>K; rep(i,N) cin>>X[i]; rep(i,1<<N) if(popcount(i)>=K){ fixdec a("0"); rep(d,N) if((i>>d)&1) a+=X[d]; S.insert(a); } rep(i,1<<N) if(popcount(i)>=K){ fixdec a("1"); rep(d,N) if((i>>d)&1) a*=X[d]; S.insert(a); } cout<<S.size()<<"\n"; return 0; }