結果
問題 | No.1467 Selling Cars |
ユーザー |
|
提出日時 | 2021-04-02 23:39:00 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 5,985 bytes |
コンパイル時間 | 2,415 ms |
コンパイル使用メモリ | 216,620 KB |
最終ジャッジ日時 | 2025-01-20 10:08:27 |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 3 TLE * 28 |
ソースコード
#line 1 "main.cpp"#include <bits/stdc++.h>#line 2 "/home/user/Library/utils/macros.hpp"#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))#define ALL(x) std::begin(x), std::end(x)#line 7 "/home/user/Library/graph/minimum-cost-flow.hpp"namespace min_cost_flow {template <class T>struct edge { int to; T cap, cost; int rev; };template <class T>void add_edge(std::vector<std::vector<edge<T> > > & graph, int from, int to, T cap, T cost) {graph[from].push_back((edge<T>) { to, cap, cost, int(graph[ to].size()) });graph[ to].push_back((edge<T>) { from, 0, - cost, int(graph[from].size()) - 1 });}template <class T>using reversed_priority_queue = std::priority_queue<T, std::vector<T>, std::greater<T> >;/*** @brief 最小費用流 (primal-dual)* @note mainly $O(V^2 U C)$ for U is the sum of capacities and $C$ is the sum of costs. and additional $O(V E)$ if negative edges exist*/template <class T>T run_destructive(std::vector<std::vector<edge<T> > > & graph, int src, int dst, T flow) {T result = 0;std::vector<T> potential(graph.size());if (0 < flow) { // initialize potential when negative edges exist (slow). you can remove this if unnecessarystd::fill(ALL(potential), std::numeric_limits<T>::max());potential[src] = 0;while (true) { // Bellman-Ford algorithmbool updated = false;REP (e_from, graph.size()) for (auto & e : graph[e_from]) if (e.cap) {if (potential[e_from] == std::numeric_limits<T>::max()) continue;if (potential[e.to] > potential[e_from] + e.cost) {potential[e.to] = potential[e_from] + e.cost; // minupdated = true;}}if (not updated) break;}}while (0 < flow) {// update potential using dijkstrastd::vector<T> distance(graph.size(), std::numeric_limits<T>::max()); // minimum distancestd::vector<int> prev_v(graph.size()); // constitute a single-linked-list represents the flow-pathstd::vector<int> prev_e(graph.size());{ // initialize distance and prev_{v,e}reversed_priority_queue<std::pair<T, int> > que; // distance * vertexdistance[src] = 0;que.emplace(0, src);while (not que.empty()) { // Dijkstra's algorithmT d; int v; std::tie(d, v) = que.top(); que.pop();if (potential[v] == std::numeric_limits<T>::max()) continue; // for unreachable nodesif (distance[v] < d) continue;// look round the vertexREP (e_index, graph[v].size()) {// consider updatingedge<T> e = graph[v][e_index];int w = e.to;if (potential[w] == std::numeric_limits<T>::max()) continue;T d1 = distance[v] + e.cost + potential[v] - potential[w]; // updated distanceif (0 < e.cap and d1 < distance[e.to]) {distance[w] = d1;prev_v[w] = v;prev_e[w] = e_index;que.emplace(d1, w);}}}}if (distance[dst] == std::numeric_limits<T>::max()) return -1; // no such flowREP (v, graph.size()) {if (potential[v] == std::numeric_limits<T>::max()) continue;potential[v] += distance[v];}// finish updating the potential// let flow on the src->dst minimum pathT delta = flow; // capacity of the pathfor (int v = dst; v != src; v = prev_v[v]) {delta = std::min(delta, graph[prev_v[v]][prev_e[v]].cap);}flow -= delta;result += delta * potential[dst];for (int v = dst; v != src; v = prev_v[v]) {edge<T> & e = graph[prev_v[v]][prev_e[v]]; // referencee.cap -= delta;graph[v][e.rev].cap += delta;}}return result;}}#line 4 "main.cpp"using namespace std;vector<int64_t> solve(int m, int n, const vector<int64_t>& a, const vector<int64_t>& b) {// coordinate compressionvector<int> points;points.insert(points.end(), ALL(a));points.insert(points.end(), ALL(b));sort(ALL(points));points.erase(unique(ALL(points)), points.end());auto lookup = [&](int x) -> int {return lower_bound(ALL(points), x) - points.begin();};int src = points.size();int dst = points.size() + 1;vector<int64_t> ans(m);REP (k, m) {std::vector<std::vector<min_cost_flow::edge<int64_t> > > g(points.size() + 2);REP (i, m) {min_cost_flow::add_edge<int64_t>(g, src, lookup(a[i]), 1, 0);}REP (i, (int)points.size() - 1) {int64_t delta = points[i + 1] - points[i];min_cost_flow::add_edge<int64_t>(g, i, i + 1, m, delta);min_cost_flow::add_edge<int64_t>(g, i + 1, i, m, delta);}REP (j, n) {min_cost_flow::add_edge<int64_t>(g, lookup(b[j]), dst, k + 1, 0);}ans[k] = min_cost_flow::run_destructive<int64_t>(g, src, dst, m);}return ans;}// generated by oj-template v4.7.2 (https://github.com/online-judge-tools/template-generator)int main() {std::ios::sync_with_stdio(false);std::cin.tie(nullptr);constexpr char endl = '\n';int M, N;cin >> M;vector<int64_t> A(M);cin >> N;vector<int64_t> B(N);REP (i, M) { cin >> A[i]; }REP (i, N) { cin >> B[i]; }auto ans = solve(M, N, A, B);REP (i, M) { cout << ans[i] << endl; }return 0;}