結果
| 問題 |
No.1441 MErGe
|
| コンテスト | |
| ユーザー |
fukafukatani
|
| 提出日時 | 2021-04-03 21:13:17 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 29,467 bytes |
| コンパイル時間 | 20,777 ms |
| コンパイル使用メモリ | 379,420 KB |
| 実行使用メモリ | 46,272 KB |
| 最終ジャッジ日時 | 2024-12-25 15:59:41 |
| 合計ジャッジ時間 | 59,205 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 1 WA * 9 TLE * 18 |
コンパイルメッセージ
warning: unused variable: `ng` --> src/main.rs:64:14 | 64 | let (ok, ng) = binary_search(0, n + 2, |mid: usize| seg.prod(0, mid).0 < x as i64); | ^^ help: if this is intentional, prefix it with an underscore: `_ng` | = note: `#[warn(unused_variables)]` on by default warning: unused variable: `ok` --> src/main.rs:69:10 | 69 | let (ok, ng) = binary_search(0, n + 2, |mid: usize| seg.prod(0, mid).0 < x as i64); | ^^ help: if this is intentional, prefix it with an underscore: `_ok`
ソースコード
#![allow(unused_imports)]
use std::cmp::*;
use std::collections::*;
use std::io::Write;
use std::ops::Bound::*;
#[allow(unused_macros)]
macro_rules! debug {
($($e:expr),*) => {
#[cfg(debug_assertions)]
$({
let (e, mut err) = (stringify!($e), std::io::stderr());
writeln!(err, "{} = {:?}", e, $e).unwrap()
})*
};
}
fn main() {
let v = read_vec::<usize>();
let (n, q) = (v[0], v[1]);
let a = read_vec::<i64>();
let mut queries = vec![];
for _ in 0..q {
let v = read_vec::<usize>();
let (t, l, r) = (v[0], v[1], v[2]);
queries.push((t, l, r));
}
let mut accum = vec![0; n + 1];
for i in 0..n {
accum[i + 1] = accum[i] + a[i];
}
let mut seg = LazySegtree::<AdditiveUpdate>::new(n + 2);
seg.apply_range(0, n + 1, 0);
seg.apply_range(1, n + 1, 1);
/*
for i in 1..=n {
debug!(get_index1(i, n, &mut seg));
debug!(get_index2(i, n, &mut seg));
}
seg.apply_range(3, 3 + 1, 0);
for i in 1..n {
debug!(get_index1(i, n, &mut seg));
debug!(get_index2(i, n, &mut seg));
}
*/
for (t, l, r) in queries {
let l = get_index1(l, n, &mut seg);
let r = get_index2(r, n, &mut seg) - 1;
// debug!((l, r));
if t == 1 {
seg.apply_range(l + 1, r + 1, 0);
} else {
let ans = accum[r] - accum[l - 1];
println!("{}", ans);
}
}
}
fn get_index1(x: usize, n: usize, seg: &mut LazySegtree<AdditiveUpdate>) -> usize {
let (ok, ng) = binary_search(0, n + 2, |mid: usize| seg.prod(0, mid).0 < x as i64);
ok
}
fn get_index2(x: usize, n: usize, seg: &mut LazySegtree<AdditiveUpdate>) -> usize {
let (ok, ng) = binary_search(0, n + 2, |mid: usize| seg.prod(0, mid).0 < x as i64);
ng
}
fn read<T: std::str::FromStr>() -> T {
let mut s = String::new();
std::io::stdin().read_line(&mut s).ok();
s.trim().parse().ok().unwrap()
}
fn read_vec<T: std::str::FromStr>() -> Vec<T> {
read::<String>()
.split_whitespace()
.map(|e| e.parse().ok().unwrap())
.collect()
}
type Input = usize;
fn binary_search<F>(lb: Input, ub: Input, mut criterion: F) -> (Input, Input)
where
F: FnMut(Input) -> bool,
{
assert_eq!(criterion(lb), true);
assert_eq!(criterion(ub), false);
let mut ok = lb;
let mut ng = ub;
while ng - ok > 1 {
let mid = (ng + ok) / 2;
if criterion(mid) {
ok = mid;
} else {
ng = mid;
}
}
(ok, ng)
}
pub struct Additive2;
impl Monoid for Additive2 {
type S = (i64, i64);
fn identity() -> Self::S {
(0, 1)
}
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
(a.0 + b.0, a.1 + b.1)
}
}
struct AdditiveUpdate;
impl MapMonoid for AdditiveUpdate {
type M = Additive2;
type F = i64;
fn identity_map() -> Self::F {
std::i64::MAX
}
fn mapping(&f: &i64, &x: &(i64, i64)) -> (i64, i64) {
if f == std::i64::MAX {
return x;
}
(f * x.1, x.1)
}
fn composition(&f: &i64, &g: &i64) -> i64 {
if f == std::i64::MAX {
return g;
}
f
}
}
//https://github.com/rust-lang-ja/ac-library-rs
pub mod internal_bit {
// Skipped:
//
// - `bsf` = `__builtin_ctz`: is equivalent to `{integer}::trailing_zeros`
#[allow(dead_code)]
pub(crate) fn ceil_pow2(n: u32) -> u32 {
32 - n.saturating_sub(1).leading_zeros()
}
#[cfg(test)]
mod tests {
#[test]
fn ceil_pow2() {
// https://github.com/atcoder/ac-library/blob/2088c8e2431c3f4d29a2cfabc6529fe0a0586c48/test/unittest/bit_test.cpp
assert_eq!(0, super::ceil_pow2(0));
assert_eq!(0, super::ceil_pow2(1));
assert_eq!(1, super::ceil_pow2(2));
assert_eq!(2, super::ceil_pow2(3));
assert_eq!(2, super::ceil_pow2(4));
assert_eq!(3, super::ceil_pow2(5));
assert_eq!(3, super::ceil_pow2(6));
assert_eq!(3, super::ceil_pow2(7));
assert_eq!(3, super::ceil_pow2(8));
assert_eq!(4, super::ceil_pow2(9));
assert_eq!(30, super::ceil_pow2(1 << 30));
assert_eq!(31, super::ceil_pow2((1 << 30) + 1));
assert_eq!(32, super::ceil_pow2(u32::max_value()));
}
}
}
pub mod internal_type_traits {
use std::{
fmt,
iter::{Product, Sum},
ops::{
Add, AddAssign, BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Div,
DivAssign, Mul, MulAssign, Not, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign, Sub,
SubAssign,
},
};
// Skipped:
//
// - `is_signed_int_t<T>` (probably won't be used directly in `modint.rs`)
// - `is_unsigned_int_t<T>` (probably won't be used directly in `modint.rs`)
// - `to_unsigned_t<T>` (not used in `fenwicktree.rs`)
/// Corresponds to `std::is_integral` in C++.
// We will remove unnecessary bounds later.
//
// Maybe we should rename this to `PrimitiveInteger` or something, as it probably won't be used in the
// same way as the original ACL.
pub trait Integral:
'static
+ Send
+ Sync
+ Copy
+ Ord
+ Not<Output = Self>
+ Add<Output = Self>
+ Sub<Output = Self>
+ Mul<Output = Self>
+ Div<Output = Self>
+ Rem<Output = Self>
+ AddAssign
+ SubAssign
+ MulAssign
+ DivAssign
+ RemAssign
+ Sum
+ Product
+ BitOr<Output = Self>
+ BitAnd<Output = Self>
+ BitXor<Output = Self>
+ BitOrAssign
+ BitAndAssign
+ BitXorAssign
+ Shl<Output = Self>
+ Shr<Output = Self>
+ ShlAssign
+ ShrAssign
+ fmt::Display
+ fmt::Debug
+ fmt::Binary
+ fmt::Octal
+ Zero
+ One
+ BoundedBelow
+ BoundedAbove
{
}
/// Class that has additive identity element
pub trait Zero {
/// The additive identity element
fn zero() -> Self;
}
/// Class that has multiplicative identity element
pub trait One {
/// The multiplicative identity element
fn one() -> Self;
}
pub trait BoundedBelow {
fn min_value() -> Self;
}
pub trait BoundedAbove {
fn max_value() -> Self;
}
macro_rules! impl_integral {
($($ty:ty),*) => {
$(
impl Zero for $ty {
#[inline]
fn zero() -> Self {
0
}
}
impl One for $ty {
#[inline]
fn one() -> Self {
1
}
}
impl BoundedBelow for $ty {
#[inline]
fn min_value() -> Self {
Self::min_value()
}
}
impl BoundedAbove for $ty {
#[inline]
fn max_value() -> Self {
Self::max_value()
}
}
impl Integral for $ty {}
)*
};
}
impl_integral!(i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize);
}
pub mod lazysegtree {
use crate::internal_bit::ceil_pow2;
use crate::Monoid;
pub trait MapMonoid {
type M: Monoid;
type F: Clone;
// type S = <Self::M as Monoid>::S;
fn identity_element() -> <Self::M as Monoid>::S {
Self::M::identity()
}
fn binary_operation(
a: &<Self::M as Monoid>::S,
b: &<Self::M as Monoid>::S,
) -> <Self::M as Monoid>::S {
Self::M::binary_operation(a, b)
}
fn identity_map() -> Self::F;
fn mapping(f: &Self::F, x: &<Self::M as Monoid>::S) -> <Self::M as Monoid>::S;
fn composition(f: &Self::F, g: &Self::F) -> Self::F;
}
impl<F: MapMonoid> Default for LazySegtree<F> {
fn default() -> Self {
Self::new(0)
}
}
impl<F: MapMonoid> LazySegtree<F> {
pub fn new(n: usize) -> Self {
vec![F::identity_element(); n].into()
}
}
impl<F: MapMonoid> From<Vec<<F::M as Monoid>::S>> for LazySegtree<F> {
fn from(v: Vec<<F::M as Monoid>::S>) -> Self {
let n = v.len();
let log = ceil_pow2(n as u32) as usize;
let size = 1 << log;
let mut d = vec![F::identity_element(); 2 * size];
let lz = vec![F::identity_map(); size];
d[size..(size + n)].clone_from_slice(&v);
let mut ret = LazySegtree {
n,
size,
log,
d,
lz,
};
for i in (1..size).rev() {
ret.update(i);
}
ret
}
}
impl<F: MapMonoid> LazySegtree<F> {
pub fn set(&mut self, mut p: usize, x: <F::M as Monoid>::S) {
assert!(p < self.n);
p += self.size;
for i in (1..=self.log).rev() {
self.push(p >> i);
}
self.d[p] = x;
for i in 1..=self.log {
self.update(p >> i);
}
}
pub fn get(&mut self, mut p: usize) -> <F::M as Monoid>::S {
assert!(p < self.n);
p += self.size;
for i in (1..=self.log).rev() {
self.push(p >> i);
}
self.d[p].clone()
}
pub fn prod(&mut self, mut l: usize, mut r: usize) -> <F::M as Monoid>::S {
// println!("{} {}", l, r);
assert!(l <= r && r <= self.n);
if l == r {
return F::identity_element();
}
l += self.size;
r += self.size;
for i in (1..=self.log).rev() {
if ((l >> i) << i) != l {
self.push(l >> i);
}
if ((r >> i) << i) != r {
self.push(r >> i);
}
}
let mut sml = F::identity_element();
let mut smr = F::identity_element();
while l < r {
if l & 1 != 0 {
sml = F::binary_operation(&sml, &self.d[l]);
l += 1;
}
if r & 1 != 0 {
r -= 1;
smr = F::binary_operation(&self.d[r], &smr);
}
l >>= 1;
r >>= 1;
}
F::binary_operation(&sml, &smr)
}
pub fn all_prod(&self) -> <F::M as Monoid>::S {
self.d[1].clone()
}
pub fn apply(&mut self, mut p: usize, f: F::F) {
assert!(p < self.n);
p += self.size;
for i in (1..=self.log).rev() {
self.push(p >> i);
}
self.d[p] = F::mapping(&f, &self.d[p]);
for i in 1..=self.log {
self.update(p >> i);
}
}
pub fn apply_range(&mut self, mut l: usize, mut r: usize, f: F::F) {
assert!(l <= r && r <= self.n);
if l == r {
return;
}
l += self.size;
r += self.size;
for i in (1..=self.log).rev() {
if ((l >> i) << i) != l {
self.push(l >> i);
}
if ((r >> i) << i) != r {
self.push((r - 1) >> i);
}
}
{
let l2 = l;
let r2 = r;
while l < r {
if l & 1 != 0 {
self.all_apply(l, f.clone());
l += 1;
}
if r & 1 != 0 {
r -= 1;
self.all_apply(r, f.clone());
}
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for i in 1..=self.log {
if ((l >> i) << i) != l {
self.update(l >> i);
}
if ((r >> i) << i) != r {
self.update((r - 1) >> i);
}
}
}
pub fn max_right<G>(&mut self, mut l: usize, g: G) -> usize
where
G: Fn(<F::M as Monoid>::S) -> bool,
{
assert!(l <= self.n);
assert!(g(F::identity_element()));
if l == self.n {
return self.n;
}
l += self.size;
for i in (1..=self.log).rev() {
self.push(l >> i);
}
let mut sm = F::identity_element();
while {
// do
while l % 2 == 0 {
l >>= 1;
}
if !g(F::binary_operation(&sm, &self.d[l])) {
while l < self.size {
self.push(l);
l *= 2;
let res = F::binary_operation(&sm, &self.d[l]);
if g(res.clone()) {
sm = res;
l += 1;
}
}
return l - self.size;
}
sm = F::binary_operation(&sm, &self.d[l]);
l += 1;
//while
{
let l = l as isize;
(l & -l) != l
}
} {}
self.n
}
pub fn min_left<G>(&mut self, mut r: usize, g: G) -> usize
where
G: Fn(<F::M as Monoid>::S) -> bool,
{
assert!(r <= self.n);
assert!(g(F::identity_element()));
if r == 0 {
return 0;
}
r += self.size;
for i in (1..=self.log).rev() {
self.push((r - 1) >> i);
}
let mut sm = F::identity_element();
while {
// do
r -= 1;
while r > 1 && r % 2 != 0 {
r >>= 1;
}
if !g(F::binary_operation(&self.d[r], &sm)) {
while r < self.size {
self.push(r);
r = 2 * r + 1;
let res = F::binary_operation(&self.d[r], &sm);
if g(res.clone()) {
sm = res;
r -= 1;
}
}
return r + 1 - self.size;
}
sm = F::binary_operation(&self.d[r], &sm);
// while
{
let r = r as isize;
(r & -r) != r
}
} {}
0
}
}
pub struct LazySegtree<F>
where
F: MapMonoid,
{
n: usize,
size: usize,
log: usize,
d: Vec<<F::M as Monoid>::S>,
lz: Vec<F::F>,
}
impl<F> LazySegtree<F>
where
F: MapMonoid,
{
fn update(&mut self, k: usize) {
self.d[k] = F::binary_operation(&self.d[2 * k], &self.d[2 * k + 1]);
}
fn all_apply(&mut self, k: usize, f: F::F) {
self.d[k] = F::mapping(&f, &self.d[k]);
if k < self.size {
self.lz[k] = F::composition(&f, &self.lz[k]);
}
}
fn push(&mut self, k: usize) {
self.all_apply(2 * k, self.lz[k].clone());
self.all_apply(2 * k + 1, self.lz[k].clone());
self.lz[k] = F::identity_map();
}
}
// TODO is it useful?
use std::fmt::{Debug, Error, Formatter, Write};
impl<F> Debug for LazySegtree<F>
where
F: MapMonoid,
F::F: Debug,
<F::M as Monoid>::S: Debug,
{
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
for i in 0..self.log {
for j in 0..1 << i {
f.write_fmt(format_args!(
"{:?}[{:?}]\t",
self.d[(1 << i) + j],
self.lz[(1 << i) + j]
))?;
}
f.write_char('\n')?;
}
for i in 0..self.size {
f.write_fmt(format_args!("{:?}\t", self.d[self.size + i]))?;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use crate::{LazySegtree, MapMonoid, Max};
struct MaxAdd;
impl MapMonoid for MaxAdd {
type M = Max<i32>;
type F = i32;
fn identity_map() -> Self::F {
0
}
fn mapping(&f: &i32, &x: &i32) -> i32 {
f + x
}
fn composition(&f: &i32, &g: &i32) -> i32 {
f + g
}
}
#[test]
fn test_max_add_lazy_segtree() {
let base = vec![3, 1, 4, 1, 5, 9, 2, 6, 5, 3];
let n = base.len();
let mut segtree: LazySegtree<MaxAdd> = base.clone().into();
check_segtree(&base, &mut segtree);
let mut segtree = LazySegtree::<MaxAdd>::new(n);
let mut internal = vec![i32::min_value(); n];
for i in 0..n {
segtree.set(i, base[i]);
internal[i] = base[i];
check_segtree(&internal, &mut segtree);
}
segtree.set(6, 5);
internal[6] = 5;
check_segtree(&internal, &mut segtree);
segtree.apply(5, 1);
internal[5] += 1;
check_segtree(&internal, &mut segtree);
segtree.set(6, 0);
internal[6] = 0;
check_segtree(&internal, &mut segtree);
segtree.apply_range(3, 8, 2);
internal[3..8].iter_mut().for_each(|e| *e += 2);
check_segtree(&internal, &mut segtree);
}
//noinspection DuplicatedCode
fn check_segtree(base: &[i32], segtree: &mut LazySegtree<MaxAdd>) {
let n = base.len();
#[allow(clippy::needless_range_loop)]
for i in 0..n {
assert_eq!(segtree.get(i), base[i]);
}
for i in 0..=n {
for j in i..=n {
assert_eq!(
segtree.prod(i, j),
base[i..j].iter().max().copied().unwrap_or(i32::min_value())
);
}
}
assert_eq!(
segtree.all_prod(),
base.iter().max().copied().unwrap_or(i32::min_value())
);
for k in 0..=10 {
let f = |x| x < k;
for i in 0..=n {
assert_eq!(
Some(segtree.max_right(i, f)),
(i..=n)
.filter(|&j| f(base[i..j]
.iter()
.max()
.copied()
.unwrap_or(i32::min_value())))
.max()
);
}
for j in 0..=n {
assert_eq!(
Some(segtree.min_left(j, f)),
(0..=j)
.filter(|&i| f(base[i..j]
.iter()
.max()
.copied()
.unwrap_or(i32::min_value())))
.min()
);
}
}
}
}
}
pub mod segtree {
use crate::internal_bit::ceil_pow2;
use crate::internal_type_traits::{BoundedAbove, BoundedBelow, One, Zero};
use std::cmp::{max, min};
use std::convert::Infallible;
use std::marker::PhantomData;
use std::ops::{Add, Mul};
// TODO Should I split monoid-related traits to another module?
pub trait Monoid {
type S: Clone;
fn identity() -> Self::S;
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S;
}
pub struct Max<S>(Infallible, PhantomData<fn() -> S>);
impl<S> Monoid for Max<S>
where
S: Copy + Ord + BoundedBelow,
{
type S = S;
fn identity() -> Self::S {
S::min_value()
}
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
max(*a, *b)
}
}
pub struct Min<S>(Infallible, PhantomData<fn() -> S>);
impl<S> Monoid for Min<S>
where
S: Copy + Ord + BoundedAbove,
{
type S = S;
fn identity() -> Self::S {
S::max_value()
}
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
min(*a, *b)
}
}
pub struct Additive<S>(Infallible, PhantomData<fn() -> S>);
impl<S> Monoid for Additive<S>
where
S: Copy + Add<Output = S> + Zero,
{
type S = S;
fn identity() -> Self::S {
S::zero()
}
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
*a + *b
}
}
pub struct Multiplicative<S>(Infallible, PhantomData<fn() -> S>);
impl<S> Monoid for Multiplicative<S>
where
S: Copy + Mul<Output = S> + One,
{
type S = S;
fn identity() -> Self::S {
S::one()
}
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
*a * *b
}
}
impl<M: Monoid> Default for Segtree<M> {
fn default() -> Self {
Segtree::new(0)
}
}
impl<M: Monoid> Segtree<M> {
pub fn new(n: usize) -> Segtree<M> {
vec![M::identity(); n].into()
}
}
impl<M: Monoid> From<Vec<M::S>> for Segtree<M> {
fn from(v: Vec<M::S>) -> Self {
let n = v.len();
let log = ceil_pow2(n as u32) as usize;
let size = 1 << log;
let mut d = vec![M::identity(); 2 * size];
d[size..(size + n)].clone_from_slice(&v);
let mut ret = Segtree { n, size, log, d };
for i in (1..size).rev() {
ret.update(i);
}
ret
}
}
impl<M: Monoid> Segtree<M> {
pub fn set(&mut self, mut p: usize, x: M::S) {
assert!(p < self.n);
p += self.size;
self.d[p] = x;
for i in 1..=self.log {
self.update(p >> i);
}
}
pub fn get(&self, p: usize) -> M::S {
assert!(p < self.n);
self.d[p + self.size].clone()
}
pub fn prod(&self, mut l: usize, mut r: usize) -> M::S {
assert!(l <= r && r <= self.n);
let mut sml = M::identity();
let mut smr = M::identity();
l += self.size;
r += self.size;
while l < r {
if l & 1 != 0 {
sml = M::binary_operation(&sml, &self.d[l]);
l += 1;
}
if r & 1 != 0 {
r -= 1;
smr = M::binary_operation(&self.d[r], &smr);
}
l >>= 1;
r >>= 1;
}
M::binary_operation(&sml, &smr)
}
pub fn all_prod(&self) -> M::S {
self.d[1].clone()
}
pub fn max_right<F>(&self, mut l: usize, f: F) -> usize
where
F: Fn(&M::S) -> bool,
{
assert!(l <= self.n);
assert!(f(&M::identity()));
if l == self.n {
return self.n;
}
l += self.size;
let mut sm = M::identity();
while {
// do
while l % 2 == 0 {
l >>= 1;
}
if !f(&M::binary_operation(&sm, &self.d[l])) {
while l < self.size {
l *= 2;
let res = M::binary_operation(&sm, &self.d[l]);
if f(&res) {
sm = res;
l += 1;
}
}
return l - self.size;
}
sm = M::binary_operation(&sm, &self.d[l]);
l += 1;
// while
{
let l = l as isize;
(l & -l) != l
}
} {}
self.n
}
pub fn min_left<F>(&self, mut r: usize, f: F) -> usize
where
F: Fn(&M::S) -> bool,
{
assert!(r <= self.n);
assert!(f(&M::identity()));
if r == 0 {
return 0;
}
r += self.size;
let mut sm = M::identity();
while {
// do
r -= 1;
while r > 1 && r % 2 == 1 {
r >>= 1;
}
if !f(&M::binary_operation(&self.d[r], &sm)) {
while r < self.size {
r = 2 * r + 1;
let res = M::binary_operation(&self.d[r], &sm);
if f(&res) {
sm = res;
r -= 1;
}
}
return r + 1 - self.size;
}
sm = M::binary_operation(&self.d[r], &sm);
// while
{
let r = r as isize;
(r & -r) != r
}
} {}
0
}
fn update(&mut self, k: usize) {
self.d[k] = M::binary_operation(&self.d[2 * k], &self.d[2 * k + 1]);
}
}
// Maybe we can use this someday
// ```
// for i in 0..=self.log {
// for j in 0..1 << i {
// print!("{}\t", self.d[(1 << i) + j]);
// }
// println!();
// }
// ```
pub struct Segtree<M>
where
M: Monoid,
{
// variable name is _n in original library
n: usize,
size: usize,
log: usize,
d: Vec<M::S>,
}
#[cfg(test)]
mod tests {
use crate::segtree::Max;
use crate::Segtree;
#[test]
fn test_max_segtree() {
let base = vec![3, 1, 4, 1, 5, 9, 2, 6, 5, 3];
let n = base.len();
let segtree: Segtree<Max<_>> = base.clone().into();
check_segtree(&base, &segtree);
let mut segtree = Segtree::<Max<_>>::new(n);
let mut internal = vec![i32::min_value(); n];
for i in 0..n {
segtree.set(i, base[i]);
internal[i] = base[i];
check_segtree(&internal, &segtree);
}
segtree.set(6, 5);
internal[6] = 5;
check_segtree(&internal, &segtree);
segtree.set(6, 0);
internal[6] = 0;
check_segtree(&internal, &segtree);
}
//noinspection DuplicatedCode
fn check_segtree(base: &[i32], segtree: &Segtree<Max<i32>>) {
let n = base.len();
#[allow(clippy::needless_range_loop)]
for i in 0..n {
assert_eq!(segtree.get(i), base[i]);
}
for i in 0..=n {
for j in i..=n {
assert_eq!(
segtree.prod(i, j),
base[i..j].iter().max().copied().unwrap_or(i32::min_value())
);
}
}
assert_eq!(
segtree.all_prod(),
base.iter().max().copied().unwrap_or(i32::min_value())
);
for k in 0..=10 {
let f = |&x: &i32| x < k;
for i in 0..=n {
assert_eq!(
Some(segtree.max_right(i, f)),
(i..=n)
.filter(|&j| f(&base[i..j]
.iter()
.max()
.copied()
.unwrap_or(i32::min_value())))
.max()
);
}
for j in 0..=n {
assert_eq!(
Some(segtree.min_left(j, f)),
(0..=j)
.filter(|&i| f(&base[i..j]
.iter()
.max()
.copied()
.unwrap_or(i32::min_value())))
.min()
);
}
}
}
}
}
use lazysegtree::*;
use segtree::*;
fukafukatani