結果
問題 | No.940 ワープ ε=ε=ε=ε=ε=│;p>д<│ |
ユーザー | CuriousFairy315 |
提出日時 | 2021-04-04 05:40:10 |
言語 | Java (openjdk 23) |
結果 |
AC
|
実行時間 | 1,188 ms / 5,000 ms |
コード長 | 45,728 bytes |
コンパイル時間 | 4,313 ms |
コンパイル使用メモリ | 92,200 KB |
実行使用メモリ | 183,256 KB |
最終ジャッジ日時 | 2024-12-26 05:18:15 |
合計ジャッジ時間 | 19,425 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 315 ms
136,320 KB |
testcase_01 | AC | 336 ms
136,380 KB |
testcase_02 | AC | 316 ms
136,456 KB |
testcase_03 | AC | 337 ms
136,408 KB |
testcase_04 | AC | 314 ms
136,328 KB |
testcase_05 | AC | 374 ms
136,796 KB |
testcase_06 | AC | 330 ms
136,648 KB |
testcase_07 | AC | 343 ms
136,684 KB |
testcase_08 | AC | 336 ms
136,304 KB |
testcase_09 | AC | 339 ms
136,644 KB |
testcase_10 | AC | 322 ms
136,688 KB |
testcase_11 | AC | 328 ms
136,652 KB |
testcase_12 | AC | 356 ms
136,940 KB |
testcase_13 | AC | 351 ms
136,656 KB |
testcase_14 | AC | 314 ms
136,556 KB |
testcase_15 | AC | 729 ms
149,488 KB |
testcase_16 | AC | 1,004 ms
183,060 KB |
testcase_17 | AC | 363 ms
136,784 KB |
testcase_18 | AC | 341 ms
136,880 KB |
testcase_19 | AC | 353 ms
136,692 KB |
testcase_20 | AC | 347 ms
136,652 KB |
testcase_21 | AC | 349 ms
136,604 KB |
testcase_22 | AC | 939 ms
180,220 KB |
testcase_23 | AC | 993 ms
181,544 KB |
testcase_24 | AC | 964 ms
182,220 KB |
testcase_25 | AC | 1,149 ms
183,256 KB |
testcase_26 | AC | 1,188 ms
178,624 KB |
ソースコード
import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.IOException; import java.io.InputStream; import java.util.Arrays; import java.util.BitSet; import java.util.NoSuchElementException; public class Main { public static void main(String[] args) { new Main(); } public Main() { InputChecker ic = new InputChecker(System.in); java.io.PrintWriter out = new java.io.PrintWriter(System.out); solve(ic, out); out.flush(); } static final int MAX = 3123456; static final long[] fac = new long[MAX]; static final long[] ifac = new long[MAX]; static final long[] inv = new long[MAX]; static final long[] pw2 = new long[MAX]; static final int MOD = 1_000_000_007; { fac[0] = fac[1] = ifac[0] = ifac[1] = inv[0] = inv[1] = pw2[0] = 1; pw2[1] = 2; for (int i = 2; i < fac.length; ++i) { fac[i] = i * fac[i - 1] % MOD; inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD; ifac[i] = inv[i] * ifac[i - 1] % MOD; pw2[i] = 2 * pw2[i - 1] % MOD; } } static final long comb(int n, int k) { return fac[n] * ifac[k] % MOD * ifac[n - k] % MOD; } public void solve(InputChecker ic, java.io.PrintWriter out) { int X = ic.nextInt(); ic.nextChar(' '); int Y = ic.nextInt(); ic.nextChar(' '); int Z = ic.nextInt(); ic.readNewLine(); ic.checkEOF(); if (X == 0 && Y == 0 && Z == 0) { out.println(1); return; } int[] xxx = new int[] { X, Y, Z }; Arrays.sort(xxx); X = xxx[2]; Y = xxx[1]; Z = xxx[0]; int[] f = new int[Math.min(X + Y, Math.min(Y + Z, Z + X)) + 1]; int[] g = new int[Math.min(X, Y) + 1]; int[] h = new int[Z + 1]; for (int i = 0; i < f.length; ++i) { f[i] = (int)(pw2[X + Y + Z - 1 - i] * (i % 2 == 0 ? 1 : MOD - 1) % MOD * fac[X + Y + Z - i] % MOD * ifac[X + Y - i] % MOD); } for (int i = 0; i < g.length; ++i) { g[Math.min(X, Y) - i] = (int)(fac[X + Y - i] * ifac[X - i] % MOD * ifac[Y - i] % MOD * ifac[i] % MOD); } for (int i = 0; i < h.length; ++i) { h[Z - i] = (int)(ifac[Z - i] * ifac[i] % MOD); } int[] fg = Convolution.convolution1_000_000_007(f, g); long ret = 0; for (int i = Math.max(0, Math.min(X, Y) + Z - h.length + 1); i < Math.min(fg.length, Math.min(X, Y) + Z + 1); ++i) { ret = (ret + (long)fg[i] * h[Math.min(X, Y) + Z - i]) % MOD; } out.println(ret); } public static int exponent10(int n, int e) { return n * pow(10, e); } public static long exponent10L(int n, int e) { return n * pow(10L, e); } public static int pow(int a, int b) { int ans = 1; for (int mul = a;b > 0;b >>= 1, mul *= mul) if ((b & 1) != 0) ans *= mul; return ans; } public static long pow(long a, long b) { long ans = 1; for (long mul = a;b > 0;b >>= 1, mul *= mul) if ((b & 1) != 0) ans *= mul; return ans; } public static class CharSet { private final BitSet set = new BitSet(256); public void add(char... c) { for (char i : c) set.set(i); } public void add(CharSet... s) { for (CharSet i : s) set.or(i.set); } public boolean contains(char... c) { for (char i : c) if (!set.get(i)) return false; return true; } public boolean contains(String s) { return contains(s.toCharArray()); } private static final class Chars extends CharSet { public Chars(char... c) { super.add(c); } public Chars(CharSet... s) { super.add(s); } @Override public void add(char... c) { throw new UnsupportedOperationException(); } @Override public void add(CharSet... s) { throw new UnsupportedOperationException(); } } public static final CharSet NUMBER = new Chars('0','1','2','3','4','5','6','7','8','9'); public static final CharSet LOWER = new Chars('a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'); public static final CharSet UPPER = new Chars('A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'); public static final CharSet ALPHABET = new Chars(LOWER, UPPER); } public static class InputChecker { private InputStream in; private final byte[] buffer = new byte[1024]; private final byte[] undo = new byte[1024]; private int undoSize = 0; private int read = 0; private int length = 0; public InputChecker(InputStream in) { this.in = in; } public final void setInputStream(InputStream in) { this.in = in; } public final void setInputStream(File in) { try { this.in = new FileInputStream(in); } catch (FileNotFoundException e) { e.printStackTrace(); } } private boolean hasNextByte() { if (undoSize > 0) return true; if (read < length) return true; read = 0; try { length = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } return length > 0; } private byte readByte() { if (hasNextByte()) return undoSize > 0 ? undo[--undoSize] : buffer[read++]; throw new NoSuchElementException(); } private void undo(byte b) { undo[undoSize ++] = b; } private void undo(char c) { if ((c & 0xFF80) == 0) { undo((byte)c); return; } undo((byte)(c & 0x3F | 0x80)); if ((c & 0xF800) == 0) { undo((byte)(c >> 6 & 0x1F | 0xC0)); } else { undo((byte)(c >> 6 & 0x3F | 0x80)); undo((byte)(c >> 12 | 0xE0)); } } public final boolean hasNext() { return hasNextByte(); } public final char nextChar() { byte b = readByte(); if ((b & 0x80) == 0) return (char)b; if ((b & 0x20) == 0) return (char)((b & 0x1F) << 6 | readByte() & 0x3F); return (char)((b & 0xF) << 12 | (readByte() & 0x3F) << 6 | readByte() & 0x3F); } public final char nextChar(char estimate) { char c = nextChar(); if (estimate == c) return estimate; undo(c); throw new AssertionError(); } public final char nextChar(CharSet estimate) { char c = nextChar(); if (estimate.contains(c)) return c; undo(c); throw new AssertionError(); } public final void readNewLine() { char c = nextChar(); if (c == '\r') { c = nextChar(); if (c != '\n') undo(c); return; } else if (c == '\n') return; undo(c); throw new AssertionError(); } public final void checkEOF() { if (hasNextByte()) throw new AssertionError(); } public final String next(CharSet contains) { StringBuilder sb = new StringBuilder(); try { do { char c = nextChar(); if (!contains.contains(c)) { undo(c); return sb.toString(); } sb.append(c); } while(true); } catch (NoSuchElementException e) { if (sb.length() <= 0) throw new AssertionError(); return sb.toString(); } } public final int nextInt() { byte b = readByte(); int n = 0; if (b == '-') { if (!isNumber(b = readByte())) { undo(b); throw new NumberFormatException(); } try { if (b == '0') { if (!isNumber(b = readByte())) { undo(b); return 0; } throw new NumberFormatException(); } do n = Math.addExact(Math.multiplyExact(n, 10), '0' - b); while(isNumber(b = readByte())); undo(b); } catch (NoSuchElementException e) { } return n; } if (!isNumber(b)) { undo(b); throw new NumberFormatException(); } try { if (b == '0') { if (!isNumber(b = readByte())) { undo(b); return 0; } throw new NumberFormatException(); } do n = Math.addExact(Math.multiplyExact(n, 10), b - '0'); while(isNumber(b = readByte())); undo(b); } catch (NoSuchElementException e) { } return n; } public final int nextInt(int min, int max) { int n = nextInt(); if (min <= n && n <= max) return n; throw new NumberFormatException(); } private static boolean isNumber(byte c) { return '0' <= c && c <= '9'; } public final long nextLong() { byte b = readByte(); long n = 0; if (b == '-') { if (!isNumber(b = readByte())) { undo(b); throw new NumberFormatException(); } try { if (b == '0') { if (!isNumber(b = readByte())) { undo(b); return 0; } throw new NumberFormatException(); } do n = Math.addExact(Math.multiplyExact(n, 10), '0' - b); while(isNumber(b = readByte())); undo(b); } catch (NoSuchElementException e) { } return n; } if (!isNumber(b)) { undo(b); throw new NumberFormatException(); } try { if (b == '0') { if (!isNumber(b = readByte())) { undo(b); return 0; } throw new NumberFormatException(); } do n = Math.addExact(Math.multiplyExact(n, 10), b - '0'); while(isNumber(b = readByte())); undo(b); } catch (NoSuchElementException e) { } return n; } public final long nextLong(long min, long max) { long n = nextLong(); if (min <= n && n <= max) return n; throw new NumberFormatException(); } public final double nextDouble() { StringBuilder sb = new StringBuilder(); byte b = readByte(); if (b == '-') { sb.append(b); b = readByte(); } if (b == '0') { sb.append(b); b = readByte(); } else { while(isNumber(b)) { sb.append(b); b = readByte(); } } if (b == '.') { sb.append(b); b = readByte(); while(isNumber(b)) { sb.append(b); b = readByte(); } } if (b == 'e' || b == 'E') { sb.append(b); b = readByte(); if (b == '-' || b == '+') { sb.append(b); b = readByte(); } while(isNumber(b)) { sb.append(b); b = readByte(); } } undo(b); return Double.parseDouble(sb.toString()); } } public static final class MathLib { public static class Barrett { private final int mod; private final long h, l; private final long MAX = 1L << 62; private final int MASK = (1 << 31) - 1; Barrett(final int mod) { this.mod = mod; final long t = MAX / mod; h = t >>> 31; l = t & MASK; } int reduce(final long x) { final long xh = x >>> 31, xl = x & MASK; long z = xl * l; z = xl * h + xh * l + (z >>> 31); z = xh * h + (z >>> 31); final int ret = (int) (x - z * mod); return ret >= mod ? ret - mod : ret; } } public static class BarrettSmall { private final int mod; final long t; BarrettSmall(final int mod) { this.mod = mod; t = (1L << 42) / mod; } int reduce(long x) { long q = x * t >> 42; x -= q * mod; return (int) (x >= mod ? x - mod : x); } } private static long safe_mod(long x, final long m) { x %= m; if (x < 0) x += m; return x; } private static long[] inv_gcd(long a, final long b) { a = safe_mod(a, b); if (a == 0) return new long[] { b, 0 }; long s = b, t = a; long m0 = 0, m1 = 1; while (t > 0) { final long u = s / t; s -= t * u; m0 -= m1 * u; long tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return new long[] { s, m0 }; } public static int pow(long n, long m, final int mod) { assert m >= 0 && mod >= 1; if (mod == 1) return 0; return pow(n, m, new Barrett(mod)); } public static int pow(long n, long m, Barrett mod) { assert m >= 0; long ans = 1, num = n; while (m != 0) { if ((m & 1) != 0) ans = mod.reduce(ans * num); m >>>= 1; num = mod.reduce(num * num); } return (int) ans; } public static int pow998_244_353(long n, long m) { assert m >= 0; long ans = 1, num = n; while (m != 0) { if ((m & 1) != 0) ans = ans * num % 998_244_353; m >>>= 1; num = num * num % 998_244_353; } return (int) ans; } public static int pow754_974_721(long n, long m) { assert m >= 0; long ans = 1, num = n; while (m != 0) { if ((m & 1) != 0) ans = ans * num % 754_974_721; m >>>= 1; num = num * num % 754_974_721; } return (int) ans; } public static int pow167_772_161(long n, long m) { assert m >= 0; long ans = 1, num = n; while (m != 0) { if ((m & 1) != 0) ans = ans * num % 167_772_161; m >>>= 1; num = num * num % 167_772_161; } return (int) ans; } public static int pow469_762_049(long n, long m) { assert m >= 0; long ans = 1, num = n; while (m != 0) { if ((m & 1) != 0) ans = ans * num % 469_762_049; m >>>= 1; num = num * num % 469_762_049; } return (int) ans; } public static int pow1_000_000_007(long n, long m) { assert m >= 0; long ans = 1, num = n; while (m != 0) { if ((m & 1) != 0) ans = ans * num % 1_000_000_007; m >>>= 1; num = num * num % 1_000_000_007; } return (int) ans; } public static int pow(long n, long m, BarrettSmall mod) { assert m >= 0; long ans = 1, num = n; while (m != 0) { if ((m & 1) != 0) ans = mod.reduce(ans * num); m >>>= 1; num = mod.reduce(num * num); } return (int) ans; } public static long[] crt(final long[] r, final long[] m) { assert r.length == m.length; final int n = r.length; long r0 = 0, m0 = 1; for (int i = 0; i < n; i++) { assert 1 <= m[i]; long r1 = safe_mod(r[i], m[i]), m1 = m[i]; if (m0 < m1) { long tmp = r0; r0 = r1; r1 = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 % m1 == 0) { if (r0 % m1 != r1) return new long[] { 0, 0 }; continue; } final long[] ig = inv_gcd(m0, m1); final long g = ig[0], im = ig[1]; final long u1 = m1 / g; if ((r1 - r0) % g != 0) return new long[] { 0, 0 }; final long x = (r1 - r0) / g % u1 * im % u1; r0 += x * m0; m0 *= u1; if (r0 < 0) r0 += m0; // System.err.printf("%d %d\n", r0, m0); } return new long[] { r0, m0 }; } public static long floor_sum(final long n, final long m, long a, long b) { long ans = 0; if (a >= m) { ans += (n - 1) * n * (a / m) / 2; a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } final long y_max = (a * n + b) / m; final long x_max = y_max * m - b; if (y_max == 0) return ans; ans += (n - (x_max + a - 1) / a) * y_max; ans += floor_sum(y_max, a, m, (a - x_max % a) % a); return ans; } } /** * Convolution. * * @verified https://atcoder.jp/contests/practice2/tasks/practice2_f * @verified https://judge.yosupo.jp/problem/convolution_mod_1000000007 */ public static final class Convolution { /** * writer: amotama 勝手に借りてます、問題あったらごめんね */ private static void fft(double[] a, double[] b, boolean invert) { int count = a.length; for (int i = 1, j = 0; i < count; i++) { int bit = count >> 1; for (; j >= bit; bit >>= 1) { j -= bit; } j += bit; if (i < j) { double temp = a[i]; a[i] = a[j]; a[j] = temp; temp = b[i]; b[i] = b[j]; b[j] = temp; } } for (int len = 2; len <= count; len <<= 1) { int halfLen = len >> 1; double angle = 2 * Math.PI / len; if (invert) { angle = -angle; } double wLenA = Math.cos(angle); double wLenB = Math.sin(angle); for (int i = 0; i < count; i += len) { double wA = 1; double wB = 0; for (int j = 0; j < halfLen; j++) { double uA = a[i + j]; double uB = b[i + j]; double vA = a[i + j + halfLen] * wA - b[i + j + halfLen] * wB; double vB = a[i + j + halfLen] * wB + b[i + j + halfLen] * wA; a[i + j] = uA + vA; b[i + j] = uB + vB; a[i + j + halfLen] = uA - vA; b[i + j + halfLen] = uB - vB; double nextWA = wA * wLenA - wB * wLenB; wB = wA * wLenB + wB * wLenA; wA = nextWA; } } } if (invert) { for (int i = 0; i < count; i++) { a[i] /= count; b[i] /= count; } } } /** * writer: amotama 勝手に借りてます、問題あったらごめんね */ public static long[] convolution(long[] a, long[] b) { int resultSize = Integer.highestOneBit(Math.max(a.length, b.length) - 1) << 2; resultSize = Math.max(resultSize, 1); double[] aReal = new double[resultSize]; double[] aImaginary = new double[resultSize]; double[] bReal = new double[resultSize]; double[] bImaginary = new double[resultSize]; for (int i = 0; i < a.length; i++) aReal[i] = a[i]; for (int i = 0; i < b.length; i++) bReal[i] = b[i]; fft(aReal, aImaginary, false); if (a == b) { System.arraycopy(aReal, 0, bReal, 0, aReal.length); System.arraycopy(aImaginary, 0, bImaginary, 0, aImaginary.length); } else { fft(bReal, bImaginary, false); } for (int i = 0; i < resultSize; i++) { double real = aReal[i] * bReal[i] - aImaginary[i] * bImaginary[i]; aImaginary[i] = aImaginary[i] * bReal[i] + bImaginary[i] * aReal[i]; aReal[i] = real; } fft(aReal, aImaginary, true); long[] result = new long[a.length + b.length - 1]; for (int i = 0; i < result.length; i++) result[i] = Math.round(aReal[i]); return result; } /** * writer: amotama 勝手に借りてます、問題あったらごめんね */ public static int[] convolution(int[] a, int[] b) { int resultSize = Integer.highestOneBit(Math.max(a.length, b.length) - 1) << 2; resultSize = Math.max(resultSize, 1); double[] aReal = new double[resultSize]; double[] aImaginary = new double[resultSize]; double[] bReal = new double[resultSize]; double[] bImaginary = new double[resultSize]; for (int i = 0; i < a.length; i++) aReal[i] = a[i]; for (int i = 0; i < b.length; i++) bReal[i] = b[i]; fft(aReal, aImaginary, false); if (a == b) { System.arraycopy(aReal, 0, bReal, 0, aReal.length); System.arraycopy(aImaginary, 0, bImaginary, 0, aImaginary.length); } else { fft(bReal, bImaginary, false); } for (int i = 0; i < resultSize; i++) { double real = aReal[i] * bReal[i] - aImaginary[i] * bImaginary[i]; aImaginary[i] = aImaginary[i] * bReal[i] + bImaginary[i] * aReal[i]; aReal[i] = real; } fft(aReal, aImaginary, true); int[] result = new int[a.length + b.length - 1]; for (int i = 0; i < result.length; i++) result[i] = (int) Math.round(aReal[i]); return result; } /** * Find a primitive root. * * @param m A prime number. * @return Primitive root. */ private static int primitiveRoot(final int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; final int[] divs = new int[20]; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long) i * i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { boolean ok = true; for (int i = 0; i < cnt; i++) { if (MathLib.pow(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } /** * Ceil of power 2. * * @param n Value. * @return Ceil of power 2. */ private static int ceilPow2(final int n) { int x = 0; while (1L << x < n) x++; return x; } /** * Garner's algorithm. * * @param c Mod convolution results. * @param mods Mods. * @return Result. */ private static long garner(final long[] c, final int[] mods) { final int n = c.length + 1; final long[] cnst = new long[n]; final long[] coef = new long[n]; java.util.Arrays.fill(coef, 1); for (int i = 0; i < n - 1; i++) { final int m1 = mods[i]; long v = (c[i] - cnst[i] + m1) % m1; v = v * MathLib.pow(coef[i], m1 - 2, m1) % m1; for (int j = i + 1; j < n; j++) { final long m2 = mods[j]; cnst[j] = (cnst[j] + coef[j] * v) % m2; coef[j] = coef[j] * m1 % m2; } } return cnst[n - 1]; } /** * Garner's algorithm. * * @param c Mod convolution results. * @param mods Mods. * @return Result. */ private static int garner(int c0, int c1, int c2, final MathLib.Barrett[] mods) { final long[] cnst = new long[4]; final long[] coef = new long[4]; java.util.Arrays.fill(coef, 1); MathLib.Barrett m1 = mods[0]; long v = m1.reduce(c0 - cnst[0] + m1.mod); v = m1.reduce(v * MathLib.pow(coef[0], m1.mod - 2, m1)); { MathLib.Barrett m2 = mods[1]; cnst[1] = m2.reduce(cnst[1] + coef[1] * v); coef[1] = m2.reduce(coef[1] * m1.mod); m2 = mods[2]; cnst[2] = m2.reduce(cnst[2] + coef[2] * v); coef[2] = m2.reduce(coef[2] * m1.mod); m2 = mods[3]; cnst[3] = m2.reduce(cnst[3] + coef[3] * v); coef[3] = m2.reduce(coef[3] * m1.mod); } m1 = mods[1]; v = m1.reduce(c1 - cnst[1] + m1.mod); v = m1.reduce(v * MathLib.pow(coef[1], m1.mod - 2, m1)); { MathLib.Barrett m2 = mods[2]; cnst[2] = m2.reduce(cnst[2] + coef[2] * v); coef[2] = m2.reduce(coef[2] * m1.mod); m2 = mods[3]; cnst[3] = m2.reduce(cnst[3] + coef[3] * v); coef[3] = m2.reduce(coef[3] * m1.mod); } m1 = mods[2]; v = m1.reduce(c2 - cnst[2] + m1.mod); v = m1.reduce(v * MathLib.pow(coef[2], m1.mod - 2, m1)); { MathLib.Barrett m2 = mods[3]; cnst[3] = m2.reduce(cnst[3] + coef[3] * v); coef[3] = m2.reduce(coef[3] * m1.mod); } return (int) cnst[3]; } /** * Garner's algorithm. * * @param c Mod convolution results. * @param mods Mods. * @return Result. */ private static int garner1_000_000_007(int c0, int c1, int c2) { final long[] cnst = new long[4]; final long[] coef = new long[4]; java.util.Arrays.fill(coef, 1); long v = (c0 - cnst[0] + 754_974_721) % 754_974_721; v = v * MathLib.pow754_974_721(coef[0], 754_974_721 - 2) % 754_974_721; { cnst[1] = (cnst[1] + coef[1] * v) % 167_772_161; coef[1] = coef[1] * 754_974_721 % 167_772_161; cnst[2] = (cnst[2] + coef[2] * v) % 469_762_049; coef[2] = coef[2] * 754_974_721 % 469_762_049; cnst[3] = (cnst[3] + coef[3] * v) % 1_000_000_007; coef[3] = coef[3] * 754_974_721 % 1_000_000_007; } v = (c1 - cnst[1] + 167_772_161) % 167_772_161; v = v * MathLib.pow167_772_161(coef[1], 167_772_161 - 2) % 167_772_161; { cnst[2] = (cnst[2] + coef[2] * v) % 469_762_049; coef[2] = coef[2] * 167_772_161 % 469_762_049; cnst[3] = (cnst[3] + coef[3] * v) % 1_000_000_007; coef[3] = coef[3] * 167_772_161 % 1_000_000_007; } v = (c2 - cnst[2] + 469_762_049) % 469_762_049; v = v * MathLib.pow469_762_049(coef[2], 469_762_049 - 2) % 469_762_049; { cnst[3] = (cnst[3] + coef[3] * v) % 1_000_000_007; coef[3] = coef[3] * 469_762_049 % 1_000_000_007; } return (int) cnst[3]; } /** * Pre-calculation for NTT. * * @param mod NTT Prime. * @param g Primitive root of mod. * @return Pre-calculation table. */ private static long[] sumE(final int mod, final int g) { final long[] sum_e = new long[30]; final long[] es = new long[30]; final long[] ies = new long[30]; final int cnt2 = Integer.numberOfTrailingZeros(mod - 1); long e = MathLib.pow(g, mod - 1 >> cnt2, mod); long ie = MathLib.pow(e, mod - 2, mod); for (int i = cnt2; i >= 2; i--) { es[i - 2] = e; ies[i - 2] = ie; e = e * e % mod; ie = ie * ie % mod; } long now = 1; for (int i = 0; i < cnt2 - 2; i++) { sum_e[i] = es[i] * now % mod; now = now * ies[i] % mod; } return sum_e; } /** * Pre-calculation for inverse NTT. * * @param mod Mod. * @param g Primitive root of mod. * @return Pre-calculation table. */ private static long[] sumIE(final int mod, final int g) { final long[] sum_ie = new long[30]; final long[] es = new long[30]; final long[] ies = new long[30]; final int cnt2 = Integer.numberOfTrailingZeros(mod - 1); long e = MathLib.pow(g, mod - 1 >> cnt2, mod); long ie = MathLib.pow(e, mod - 2, mod); for (int i = cnt2; i >= 2; i--) { es[i - 2] = e; ies[i - 2] = ie; e = e * e % mod; ie = ie * ie % mod; } long now = 1; for (int i = 0; i < cnt2 - 2; i++) { sum_ie[i] = ies[i] * now % mod; now = now * es[i] % mod; } return sum_ie; } /** * Inverse NTT. * * @param a Target array. * @param sumIE Pre-calculation table. * @param mod NTT Prime. */ private static void butterflyInv(final long[] a, final long[] sumIE, final int mod) { final int n = a.length; final int h = ceilPow2(n); for (int ph = h; ph >= 1; ph--) { final int w = 1 << ph - 1, p = 1 << h - ph; long inow = 1; for (int s = 0; s < w; s++) { final int offset = s << h - ph + 1; for (int i = 0; i < p; i++) { final long l = a[i + offset]; final long r = a[i + offset + p]; a[i + offset] = (l + r) % mod; a[i + offset + p] = (mod + l - r) * inow % mod; } final int x = Integer.numberOfTrailingZeros(~s); inow = inow * sumIE[x] % mod; } } } /** * Inverse NTT. * * @param a Target array. * @param sumE Pre-calculation table. * @param mod NTT Prime. */ private static void butterfly(final long[] a, final long[] sumE, final int mod) { final int n = a.length; final int h = ceilPow2(n); for (int ph = 1; ph <= h; ph++) { final int w = 1 << ph - 1, p = 1 << h - ph; long now = 1; for (int s = 0; s < w; s++) { final int offset = s << h - ph + 1; for (int i = 0; i < p; i++) { final long l = a[i + offset]; final long r = a[i + offset + p] * now % mod; a[i + offset] = (l + r) % mod; a[i + offset + p] = (l - r + mod) % mod; } final int x = Integer.numberOfTrailingZeros(~s); now = now * sumE[x] % mod; } } } /** * Inverse NTT used mod 998_244_353. * * @param a Target array. * @param sumIE Pre-calculation table. */ private static void butterflyInv998_244_353(final int[] a, final int[] sumIE) { final int n = a.length; final int h = ceilPow2(n); for (int ph = h; ph >= 1; ph--) { final int w = 1 << ph - 1, p = 1 << h - ph; long inow = 1; for (int s = 0; s < w; s++) { final int offset = s << h - ph + 1; for (int i = 0; i < p; i++) { final long l = a[i + offset]; final long r = a[i + offset + p]; a[i + offset] = (int)((l + r) % 998_244_353); a[i + offset + p] = (int)((998_244_353 + l - r) * inow % 998_244_353); } final int x = Integer.numberOfTrailingZeros(~s); inow = inow * sumIE[x] % 998_244_353; } } } /** * Inverse NTT used mod 754_974_721. * * @param a Target array. * @param sumIE Pre-calculation table. */ private static void butterflyInv754_974_721(final int[] a, final int[] sumIE) { final int n = a.length; final int h = ceilPow2(n); for (int ph = h; ph >= 1; ph--) { final int w = 1 << ph - 1, p = 1 << h - ph; long inow = 1; for (int s = 0; s < w; s++) { final int offset = s << h - ph + 1; for (int i = 0; i < p; i++) { final long l = a[i + offset]; final long r = a[i + offset + p]; a[i + offset] = (int)((l + r) % 754_974_721); a[i + offset + p] = (int)((754_974_721 + l - r) * inow % 754_974_721); } final int x = Integer.numberOfTrailingZeros(~s); inow = inow * sumIE[x] % 754_974_721; } } } /** * Inverse NTT used mod 167_772_161. * * @param a Target array. * @param sumIE Pre-calculation table. */ private static void butterflyInv167_772_161(final int[] a, final int[] sumIE) { final int n = a.length; final int h = ceilPow2(n); for (int ph = h; ph >= 1; ph--) { final int w = 1 << ph - 1, p = 1 << h - ph; long inow = 1; for (int s = 0; s < w; s++) { final int offset = s << h - ph + 1; for (int i = 0; i < p; i++) { final long l = a[i + offset]; final long r = a[i + offset + p]; a[i + offset] = (int)((l + r) % 167_772_161); a[i + offset + p] = (int)((167_772_161 + l - r) * inow % 167_772_161); } final int x = Integer.numberOfTrailingZeros(~s); inow = inow * sumIE[x] % 167_772_161; } } } /** * Inverse NTT used mod 469_762_049. * * @param a Target array. * @param sumIE Pre-calculation table. */ private static void butterflyInv469_762_049(final int[] a, final int[] sumIE) { final int n = a.length; final int h = ceilPow2(n); for (int ph = h; ph >= 1; ph--) { final int w = 1 << ph - 1, p = 1 << h - ph; long inow = 1; for (int s = 0; s < w; s++) { final int offset = s << h - ph + 1; for (int i = 0; i < p; i++) { final long l = a[i + offset]; final long r = a[i + offset + p]; a[i + offset] = (int)((l + r) % 469_762_049); a[i + offset + p] = (int)((469_762_049 + l - r) * inow % 469_762_049); } final int x = Integer.numberOfTrailingZeros(~s); inow = inow * sumIE[x] % 469_762_049; } } } /** * Inverse NTT. * * @param a Target array. * @param sumIE Pre-calculation table. * @param mod NTT Prime. */ private static void butterflyInv(final int[] a, final int[] sumIE, final MathLib.Barrett mod) { final int n = a.length; final int h = ceilPow2(n); for (int ph = h; ph >= 1; ph--) { final int w = 1 << ph - 1, p = 1 << h - ph; long inow = 1; for (int s = 0; s < w; s++) { final int offset = s << h - ph + 1; for (int i = 0; i < p; i++) { final long l = a[i + offset]; final long r = a[i + offset + p]; long sum = l + r; if (sum >= mod.mod) sum -= mod.mod; a[i + offset] = (int)sum; a[i + offset + p] = mod.reduce((mod.mod + l - r) * inow); } final int x = Integer.numberOfTrailingZeros(~s); inow = mod.reduce(inow * sumIE[x]); } } } /** * Inverse NTT used mod 998_244_353. * * @param a Target array. * @param sumE Pre-calculation table. * @param mod NTT Prime. */ private static void butterfly998_244_353(final int[] a, final int[] sumE) { final int n = a.length; final int h = ceilPow2(n); final long ADD = (long)(998_244_353 - 2) * 998_244_353; for (int ph = 1; ph <= h; ph++) { final int w = 1 << ph - 1, p = 1 << h - ph; long now = 1; for (int s = 0; s < w; s++) { final int offset = s << h - ph + 1; for (int i = 0; i < p; i++) { final long l = a[i + offset]; final long r = a[i + offset + p] * now; a[i + offset] = (int)((l + r) % 998_244_353); a[i + offset + p] = (int)((l - r + ADD) % 998_244_353); } final int x = Integer.numberOfTrailingZeros(~s); now = now * sumE[x] % 998_244_353; } } } /** * Inverse NTT used mod 754_974_721. * * @param a Target array. * @param sumE Pre-calculation table. * @param mod NTT Prime. */ private static void butterfly754_974_721(final int[] a, final int[] sumE) { final int n = a.length; final int h = ceilPow2(n); final long ADD = (long)(754_974_721 - 2) * 754_974_721; for (int ph = 1; ph <= h; ph++) { final int w = 1 << ph - 1, p = 1 << h - ph; long now = 1; for (int s = 0; s < w; s++) { final int offset = s << h - ph + 1; for (int i = 0; i < p; i++) { final long l = a[i + offset]; final long r = a[i + offset + p] * now; a[i + offset] = (int)((l + r) % 754_974_721); a[i + offset + p] = (int)((l - r + ADD) % 754_974_721); } final int x = Integer.numberOfTrailingZeros(~s); now = now * sumE[x] % 754_974_721; } } } /** * Inverse NTT used mod 167_772_161. * * @param a Target array. * @param sumE Pre-calculation table. * @param mod NTT Prime. */ private static void butterfly167_772_161(final int[] a, final int[] sumE) { final int n = a.length; final int h = ceilPow2(n); final long ADD = (long)(167_772_161 - 2) * 167_772_161; for (int ph = 1; ph <= h; ph++) { final int w = 1 << ph - 1, p = 1 << h - ph; long now = 1; for (int s = 0; s < w; s++) { final int offset = s << h - ph + 1; for (int i = 0; i < p; i++) { final long l = a[i + offset]; final long r = a[i + offset + p] * now; a[i + offset] = (int)((l + r) % 167_772_161); a[i + offset + p] = (int)((l - r + ADD) % 167_772_161); } final int x = Integer.numberOfTrailingZeros(~s); now = now * sumE[x] % 167_772_161; } } } /** * Inverse NTT used mod 469_762_049. * * @param a Target array. * @param sumE Pre-calculation table. * @param mod NTT Prime. */ private static void butterfly469_762_049(final int[] a, final int[] sumE) { final int n = a.length; final int h = ceilPow2(n); final long ADD = (long)(469_762_049 - 2) * 469_762_049; for (int ph = 1; ph <= h; ph++) { final int w = 1 << ph - 1, p = 1 << h - ph; long now = 1; for (int s = 0; s < w; s++) { final int offset = s << h - ph + 1; for (int i = 0; i < p; i++) { final long l = a[i + offset]; final long r = a[i + offset + p] * now; a[i + offset] = (int)((l + r) % 469_762_049); a[i + offset + p] = (int)((l - r + ADD) % 469_762_049); } final int x = Integer.numberOfTrailingZeros(~s); now = now * sumE[x] % 469_762_049; } } } /** * Inverse NTT. * * @param a Target array. * @param sumE Pre-calculation table. * @param mod NTT Prime. */ private static void butterfly(final int[] a, final int[] sumE, final MathLib.Barrett mod) { final int n = a.length; final int h = ceilPow2(n); final long ADD = (long)(mod.mod - 2) * mod.mod; for (int ph = 1; ph <= h; ph++) { final int w = 1 << ph - 1, p = 1 << h - ph; long now = 1; for (int s = 0; s < w; s++) { final int offset = s << h - ph + 1; for (int i = 0; i < p; i++) { final long l = a[i + offset]; final long r = a[i + offset + p] * now; a[i + offset] = mod.reduce(l + r); a[i + offset + p] = mod.reduce(l - r + ADD); } final int x = Integer.numberOfTrailingZeros(~s); now = mod.reduce(now * sumE[x]); } } } /** * Convolution used mod 998_244_353. * * @param a Target array 1. * @param b Target array 2. * @return Answer. */ public static int[] convolution998_244_353(int[] a, int[] b) { final int n = a.length; final int m = b.length; if (n == 0 || m == 0) return new int[0]; final int z = 1 << ceilPow2(n + m - 1); { final int[] na = new int[z]; final int[] nb = new int[z]; System.arraycopy(a, 0, na, 0, n); System.arraycopy(b, 0, nb, 0, m); a = na; b = nb; } final int g = primitiveRoot(998_244_353); final int[] sume; { long[] s = sumE(998_244_353, g); sume = new int[s.length]; for (int i = 0; i < s.length; ++i) sume[i] = (int) s[i]; } final int[] sumie; { long[] s = sumIE(998_244_353, g); sumie = new int[s.length]; for (int i = 0; i < s.length; ++i) sumie[i] = (int) s[i]; } butterfly998_244_353(a, sume); butterfly998_244_353(b, sume); for (int i = 0; i < z; i++) a[i] = (int)((long) a[i] * b[i] % 998_244_353); butterflyInv998_244_353(a, sumie); a = java.util.Arrays.copyOf(a, n + m - 1); final long iz = MathLib.pow998_244_353(z, 998_244_353 - 2); for (int i = 0; i < n + m - 1; i++) a[i] = (int)(a[i] * iz % 998_244_353); return a; } /** * Convolution used mod 754_974_721. * * @param a Target array 1. * @param b Target array 2. * @return Answer. */ public static int[] convolution754_974_721(int[] a, int[] b) { final int n = a.length; final int m = b.length; if (n == 0 || m == 0) return new int[0]; final int z = 1 << ceilPow2(n + m - 1); { final int[] na = new int[z]; final int[] nb = new int[z]; System.arraycopy(a, 0, na, 0, n); System.arraycopy(b, 0, nb, 0, m); a = na; b = nb; } final int g = primitiveRoot(754_974_721); final int[] sume; { long[] s = sumE(754_974_721, g); sume = new int[s.length]; for (int i = 0; i < s.length; ++i) sume[i] = (int) s[i]; } final int[] sumie; { long[] s = sumIE(754_974_721, g); sumie = new int[s.length]; for (int i = 0; i < s.length; ++i) sumie[i] = (int) s[i]; } butterfly754_974_721(a, sume); butterfly754_974_721(b, sume); for (int i = 0; i < z; i++) a[i] = (int)((long) a[i] * b[i] % 754_974_721); butterflyInv754_974_721(a, sumie); a = java.util.Arrays.copyOf(a, n + m - 1); final long iz = MathLib.pow754_974_721(z, 754_974_721 - 2); for (int i = 0; i < n + m - 1; i++) a[i] = (int)(a[i] * iz % 754_974_721); return a; } /** * Convolution used mod 167_772_161. * * @param a Target array 1. * @param b Target array 2. * @return Answer. */ public static int[] convolution167_772_161(int[] a, int[] b) { final int n = a.length; final int m = b.length; if (n == 0 || m == 0) return new int[0]; final int z = 1 << ceilPow2(n + m - 1); { final int[] na = new int[z]; final int[] nb = new int[z]; System.arraycopy(a, 0, na, 0, n); System.arraycopy(b, 0, nb, 0, m); a = na; b = nb; } final int g = primitiveRoot(167_772_161); final int[] sume; { long[] s = sumE(167_772_161, g); sume = new int[s.length]; for (int i = 0; i < s.length; ++i) sume[i] = (int) s[i]; } final int[] sumie; { long[] s = sumIE(167_772_161, g); sumie = new int[s.length]; for (int i = 0; i < s.length; ++i) sumie[i] = (int) s[i]; } butterfly167_772_161(a, sume); butterfly167_772_161(b, sume); for (int i = 0; i < z; i++) a[i] = (int)((long) a[i] * b[i] % 167_772_161); butterflyInv167_772_161(a, sumie); a = java.util.Arrays.copyOf(a, n + m - 1); final long iz = MathLib.pow167_772_161(z, 167_772_161 - 2); for (int i = 0; i < n + m - 1; i++) a[i] = (int)(a[i] * iz % 167_772_161); return a; } /** * Convolution used mod 469_762_049. * * @param a Target array 1. * @param b Target array 2. * @return Answer. */ public static int[] convolution469_762_049(int[] a, int[] b) { final int n = a.length; final int m = b.length; if (n == 0 || m == 0) return new int[0]; final int z = 1 << ceilPow2(n + m - 1); { final int[] na = new int[z]; final int[] nb = new int[z]; System.arraycopy(a, 0, na, 0, n); System.arraycopy(b, 0, nb, 0, m); a = na; b = nb; } final int g = primitiveRoot(469_762_049); final int[] sume; { long[] s = sumE(469_762_049, g); sume = new int[s.length]; for (int i = 0; i < s.length; ++i) sume[i] = (int) s[i]; } final int[] sumie; { long[] s = sumIE(469_762_049, g); sumie = new int[s.length]; for (int i = 0; i < s.length; ++i) sumie[i] = (int) s[i]; } butterfly469_762_049(a, sume); butterfly469_762_049(b, sume); for (int i = 0; i < z; i++) a[i] = (int)((long) a[i] * b[i] % 469_762_049); butterflyInv469_762_049(a, sumie); a = java.util.Arrays.copyOf(a, n + m - 1); final long iz = MathLib.pow469_762_049(z, 469_762_049 - 2); for (int i = 0; i < n + m - 1; i++) a[i] = (int)(a[i] * iz % 469_762_049); return a; } /** * Convolution. * * @param a Target array 1. * @param b Target array 2. * @param mod NTT Prime. * @return Answer. */ public static int[] convolution(int[] a, int[] b, final int mod) { MathLib.Barrett barrett = new MathLib.Barrett(mod); final int n = a.length; final int m = b.length; if (n == 0 || m == 0) return new int[0]; final int z = 1 << ceilPow2(n + m - 1); { final int[] na = new int[z]; final int[] nb = new int[z]; System.arraycopy(a, 0, na, 0, n); System.arraycopy(b, 0, nb, 0, m); a = na; b = nb; } final int g = primitiveRoot(mod); final int[] sume; { long[] s = sumE(mod, g); sume = new int[s.length]; for (int i = 0; i < s.length; ++i) sume[i] = (int) s[i]; } final int[] sumie; { long[] s = sumIE(mod, g); sumie = new int[s.length]; for (int i = 0; i < s.length; ++i) sumie[i] = (int) s[i]; } butterfly(a, sume, barrett); butterfly(b, sume, barrett); for (int i = 0; i < z; i++) a[i] = barrett.reduce((long) a[i] * b[i]); butterflyInv(a, sumie, barrett); a = java.util.Arrays.copyOf(a, n + m - 1); final long iz = MathLib.pow(z, mod - 2, mod); for (int i = 0; i < n + m - 1; i++) a[i] = barrett.reduce(a[i] * iz); return a; } /** * Convolution. * * @param a Target array 1. * @param b Target array 2. * @param mod NTT Prime. * @return Answer. */ public static long[] convolution(long[] a, long[] b, final int mod) { final int n = a.length; final int m = b.length; if (n == 0 || m == 0) return new long[0]; final int z = 1 << ceilPow2(n + m - 1); { final long[] na = new long[z]; final long[] nb = new long[z]; System.arraycopy(a, 0, na, 0, n); System.arraycopy(b, 0, nb, 0, m); a = na; b = nb; } final int g = primitiveRoot(mod); final long[] sume = sumE(mod, g); final long[] sumie = sumIE(mod, g); butterfly(a, sume, mod); butterfly(b, sume, mod); for (int i = 0; i < z; i++) { a[i] = a[i] * b[i] % mod; } butterflyInv(a, sumie, mod); a = java.util.Arrays.copyOf(a, n + m - 1); final long iz = MathLib.pow(z, mod - 2, mod); for (int i = 0; i < n + m - 1; i++) a[i] = a[i] * iz % mod; return a; } /** * Convolution. * * @param a Target array 1. * @param b Target array 2. * @param mod Any mod. * @return Answer. */ public static long[] convolutionLL(final long[] a, final long[] b, final int mod) { final int n = a.length; final int m = b.length; if (n == 0 || m == 0) return new long[0]; final int mod1 = 754_974_721; final int mod2 = 167_772_161; final int mod3 = 469_762_049; final long[] c1 = convolution(a, b, mod1); final long[] c2 = convolution(a, b, mod2); final long[] c3 = convolution(a, b, mod3); final int retSize = c1.length; final long[] ret = new long[retSize]; final int[] mods = { mod1, mod2, mod3, mod }; for (int i = 0; i < retSize; ++i) { ret[i] = garner(new long[] { c1[i], c2[i], c3[i] }, mods); } return ret; } /** * Convolution. * * @param a Target array 1. * @param b Target array 2. * @param mod Any mod. * @return Answer. */ public static int[] convolutionLL(final int[] a, final int[] b, final int mod) { final int n = a.length; final int m = b.length; if (n == 0 || m == 0) return new int[0]; final int mod1 = 754_974_721; final int mod2 = 167_772_161; final int mod3 = 469_762_049; final int[] c1 = convolution754_974_721(a, b); final int[] c2 = convolution167_772_161(a, b); final int[] c3 = convolution469_762_049(a, b); final int retSize = c1.length; final int[] ret = new int[retSize]; final MathLib.Barrett[] mods = { new MathLib.Barrett(mod1), new MathLib.Barrett(mod2), new MathLib.Barrett(mod3), new MathLib.Barrett(mod) }; for (int i = 0; i < retSize; ++i) ret[i] = garner(c1[i], c2[i], c3[i], mods); return ret; } /** * Convolution used mod 1_000_000_007. * * @param a Target array 1. * @param b Target array 2. * @return Answer. */ public static int[] convolution1_000_000_007(final int[] a, final int[] b) { final int n = a.length; final int m = b.length; if (n == 0 || m == 0) return new int[0]; final int[] c1 = convolution754_974_721(a, b); final int[] c2 = convolution167_772_161(a, b); final int[] c3 = convolution469_762_049(a, b); final int retSize = c1.length; final int[] ret = new int[retSize]; for (int i = 0; i < retSize; ++i) ret[i] = garner1_000_000_007(c1[i], c2[i], c3[i]); return ret; } /** * Convolution. need: length < 2000 * * @param a Target array 1. * @param b Target array 2. * @param mod Any mod. * @return Answer. */ public static int[] convolutionLL2(final int[] a, final int[] b, final int mod) { if (Math.max(a.length, b.length) < 4000) { long[] la = new long[a.length], ha = new long[a.length], ma = new long[a.length], lb = new long[b.length], hb = new long[b.length], mb = new long[b.length]; MathLib.Barrett barrett = new MathLib.Barrett(mod); for (int i = 0; i < a.length; ++i) { ha[i] = a[i] >> 15; la[i] = a[i] & 0x7FFF; ma[i] = la[i] + ha[i]; } for (int i = 0; i < b.length; ++i) { hb[i] = b[i] >> 15; lb[i] = b[i] & 0x7FFF; mb[i] = lb[i] + hb[i]; } long[] l = convolution(la, lb), h = convolution(ha, hb), m = convolution(ma, mb); int[] ret = new int[m.length]; for (int i = 0; i < m.length; ++i) { h[i] = barrett.reduce(h[i]); m[i] = barrett.reduce(m[i] - l[i] - h[i] + (long)m.length * mod); ret[i] = barrett.reduce((h[i] << 30) + (m[i] << 15) + l[i]); } return ret; } return convolutionLL(a, b, mod); } /** * Naive convolution. (Complexity is O(N^2)!!) * * @param a Target array 1. * @param b Target array 2. * @param mod Mod. * @return Answer. */ public static long[] convolutionNaive(final long[] a, final long[] b, final int mod) { final int n = a.length; final int m = b.length; final int k = n + m - 1; final long[] ret = new long[k]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ret[i + j] += a[i] * b[j] % mod; ret[i + j] %= mod; } } return ret; } } }