結果
| 問題 |
No.1473 おでぶなおばけさん
|
| コンテスト | |
| ユーザー |
nok0
|
| 提出日時 | 2021-04-04 10:06:52 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 18,169 bytes |
| コンパイル時間 | 2,561 ms |
| コンパイル使用メモリ | 219,804 KB |
| 最終ジャッジ日時 | 2025-01-20 11:01:17 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 44 TLE * 3 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#pragma region Graph Graph
#include <algorithm>
#include <cassert>
#include <deque>
#include <iostream>
#include <queue>
#include <vector>
struct Edge {
int to;
long long cost;
Edge() = default;
Edge(int to_, long long cost_) : to(to_), cost(cost_) {}
bool operator<(const Edge &a) const { return cost < a.cost; }
bool operator>(const Edge &a) const { return cost > a.cost; }
friend std::ostream &operator<<(std::ostream &s, Edge &a) {
s << "to: " << a.to << ", cost: " << a.cost;
return s;
}
};
class Graph {
std::vector<std::vector<Edge>> edges;
public:
inline const std::vector<Edge> &operator[](int k) const { return edges[k]; }
inline std::vector<Edge> &operator[](int k) { return edges[k]; }
int size() const { return edges.size(); }
void resize(const int n) { edges.resize(n); }
Graph() = default;
Graph(int n) : edges(n) {}
Graph(int n, int e, bool weight = 0, bool directed = 0, int idx = 1) : edges(n) { input(e, weight, directed, idx); }
const long long INF = 3e18;
void input(int e = -1, bool weight = 0, bool directed = false, int idx = 1) {
if(e == -1) e = size() - 1;
while(e--) {
int u, v;
long long cost = 1;
std::cin >> u >> v;
if(weight) std::cin >> cost;
u -= idx, v -= idx;
edges[u].emplace_back(v, cost);
if(!directed) edges[v].emplace_back(u, cost);
}
}
void add_edge(int u, int v, long long cost = 1, bool directed = false, int idx = 0) {
u -= idx, v -= idx;
edges[u].emplace_back(v, cost);
if(!directed) edges[v].emplace_back(u, cost);
}
// Ο(V+E)
std::vector<long long> bfs(int s) {
std::vector<long long> dist(size(), INF);
std::queue<int> que;
dist[s] = 0;
que.push(s);
while(!que.empty()) {
int v = que.front();
que.pop();
for(auto &e : edges[v]) {
if(dist[e.to] != INF) continue;
dist[e.to] = dist[v] + e.cost;
que.push(e.to);
}
}
return dist;
}
// Ο(V+E)
// constraint: cost of each edge is zero or one
std::vector<long long> zero_one_bfs(int s) {
std::vector<long long> dist(size(), INF);
std::deque<int> deq;
dist[s] = 0;
deq.push_back(s);
while(!deq.empty()) {
int v = deq.front();
deq.pop_front();
for(auto &e : edges[v]) {
assert(0LL <= e.cost and e.cost < 2LL);
if(e.cost and dist[e.to] > dist[v] + 1) {
dist[e.to] = dist[v] + 1;
deq.push_back(e.to);
} else if(!e.cost and dist[e.to] > dist[v]) {
dist[e.to] = dist[v];
deq.push_front(e.to);
}
}
}
return dist;
}
// Ο((E+V)logV)
// cannot reach: INF
std::vector<long long> dijkstra(int s) { // verified
std::vector<long long> dist(size(), INF);
const auto compare = [](const std::pair<long long, int> &a, const std::pair<long long, int> &b) { return a.first > b.first; };
std::priority_queue<std::pair<long long, int>, std::vector<std::pair<long long, int>>, decltype(compare)> que{compare};
dist[s] = 0;
que.emplace(0, s);
while(!que.empty()) {
std::pair<long long, int> p = que.top();
que.pop();
int v = p.second;
if(dist[v] < p.first) continue;
for(auto &e : edges[v]) {
if(dist[e.to] > dist[v] + e.cost) {
dist[e.to] = dist[v] + e.cost;
que.emplace(dist[e.to], e.to);
}
}
}
return dist;
}
// Ο(VE)
// cannot reach: INF
// negative cycle: -INF
std::vector<long long> bellman_ford(int s) { // verified
int n = size();
std::vector<long long> res(n, INF);
res[s] = 0;
for(int loop = 0; loop < n - 1; loop++) {
for(int v = 0; v < n; v++) {
if(res[v] == INF) continue;
for(auto &e : edges[v]) {
res[e.to] = std::min(res[e.to], res[v] + e.cost);
}
}
}
std::queue<int> que;
std::vector<int> chk(n);
for(int v = 0; v < n; v++) {
if(res[v] == INF) continue;
for(auto &e : edges[v]) {
if(res[e.to] > res[v] + e.cost and !chk[e.to]) {
que.push(e.to);
chk[e.to] = 1;
}
}
}
while(!que.empty()) {
int now = que.front();
que.pop();
for(auto &e : edges[now]) {
if(!chk[e.to]) {
chk[e.to] = 1;
que.push(e.to);
}
}
}
for(int i = 0; i < n; i++)
if(chk[i]) res[i] = -INF;
return res;
}
// Ο(V^3)
std::vector<std::vector<long long>> warshall_floyd() { // verified
int n = size();
std::vector<std::vector<long long>> dist(n, std::vector<long long>(n, INF));
for(int i = 0; i < n; i++) dist[i][i] = 0;
for(int i = 0; i < n; i++)
for(auto &e : edges[i]) dist[i][e.to] = std::min(dist[i][e.to], e.cost);
for(int k = 0; k < n; k++)
for(int i = 0; i < n; i++) {
if(dist[i][k] == INF) continue;
for(int j = 0; j < n; j++) {
if(dist[k][j] == INF) continue;
dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]);
}
}
return dist;
}
// Ο(V) (using DFS)
// if a directed cycle exists, return {}
std::vector<int> topological_sort() { // verified
std::vector<int> res;
int n = size();
std::vector<int> used(n, 0);
bool not_DAG = false;
auto dfs = [&](auto self, int k) -> void {
if(not_DAG) return;
if(used[k]) {
if(used[k] == 1) not_DAG = true;
return;
}
used[k] = 1;
for(auto &e : edges[k]) self(self, e.to);
used[k] = 2;
res.push_back(k);
};
for(int i = 0; i < n; i++) dfs(dfs, i);
if(not_DAG) return std::vector<int>{};
std::reverse(res.begin(), res.end());
return res;
}
bool is_DAG() { return !topological_sort().empty(); } // verified
// Ο(V)
// array of the distance from each vertex to the most distant vertex
std::vector<long long> height() { // verified
auto vec1 = bfs(0);
int v1 = -1, v2 = -1;
long long dia = -1;
for(int i = 0; i < int(size()); i++)
if(dia < vec1[i]) dia = vec1[i], v1 = i;
vec1 = bfs(v1);
dia = -1;
for(int i = 0; i < int(size()); i++)
if(dia < vec1[i]) dia = vec1[i], v2 = i;
auto vec2 = bfs(v2);
for(int i = 0; i < int(size()); i++) {
if(vec1[i] < vec2[i]) vec1[i] = vec2[i];
}
return vec1;
}
// O(V+E)
// vector<(int)(0 or 1)>
// if it is not bipartite, return {}
std::vector<int> bipartite_grouping() {
std::vector<int> colors(size(), -1);
auto dfs = [&](auto self, int now, int col) -> bool {
colors[now] = col;
for(auto &e : edges[now]) {
if(col == colors[e.to]) return false;
if(colors[e.to] == -1 and !self(self, e.to, !col)) return false;
}
return true;
};
for(int i = 0; i < int(size()); i++)
if(!colors[i] and !dfs(dfs, i, 0)) return std::vector<int>{};
return colors;
}
bool is_bipartite() { return !bipartite_grouping().empty(); }
// Ο(V+E)
// ((v1, v2), diameter)
std::pair<std::pair<int, int>, long long> diameter() { // verified
auto vec = bfs(0);
int v1 = -1, v2 = -1;
long long dia = -1;
for(int i = 0; i < int(size()); i++)
if(dia < vec[i]) dia = vec[i], v1 = i;
vec = bfs(v1);
dia = -1;
for(int i = 0; i < int(size()); i++)
if(dia < vec[i]) dia = vec[i], v2 = i;
std::pair<std::pair<int, int>, long long> res = {{v1, v2}, dia};
return res;
}
// Ο(ElogV)
long long prim() { // verified
long long res = 0;
std::priority_queue<Edge, std::vector<Edge>, std::greater<Edge>> que;
for(auto &e : edges[0]) que.push(e);
std::vector<int> chk(size());
chk[0] = 1;
int cnt = 1;
while(cnt < size()) {
auto e = que.top();
que.pop();
if(chk[e.to]) continue;
cnt++;
res += e.cost;
chk[e.to] = 1;
for(auto &e2 : edges[e.to]) que.push(e2);
}
return res;
}
// Ο(ElogE)
long long kruskal() { // verified
std::vector<std::tuple<int, int, long long>> Edges;
for(int i = 0; i < int(size()); i++)
for(auto &e : edges[i]) Edges.emplace_back(i, e.to, e.cost);
std::sort(Edges.begin(), Edges.end(), [](const std::tuple<int, int, long long> &a, const std::tuple<int, int, long long> &b) {
return std::get<2>(a) < std::get<2>(b);
});
std::vector<int> uf_data(size(), -1);
auto root = [&uf_data](auto self, int x) -> int {
if(uf_data[x] < 0) return x;
return uf_data[x] = self(self, uf_data[x]);
};
auto unite = [&uf_data, &root](int u, int v) -> bool {
u = root(root, u), v = root(root, v);
if(u == v) return false;
if(uf_data[u] > uf_data[v]) std::swap(u, v);
uf_data[u] += uf_data[v];
uf_data[v] = u;
return true;
};
long long ret = 0;
for(auto &e : Edges)
if(unite(std::get<0>(e), std::get<1>(e))) ret += std::get<2>(e);
return ret;
}
// O(V)
std::vector<int> centroid() {
int n = size();
std::vector<int> centroid, sz(n);
auto dfs = [&](auto self, int now, int per) -> void {
sz[now] = 1;
bool is_centroid = true;
for(auto &e : edges[now]) {
if(e.to != per) {
self(self, e.to, now);
sz[now] += sz[e.to];
if(sz[e.to] > n / 2) is_centroid = false;
}
}
if(n - sz[now] > n / 2) is_centroid = false;
if(is_centroid) centroid.push_back(now);
};
dfs(dfs, 0, -1);
return centroid;
}
// Ο(V+E)
// directed graph from root to leaf
Graph root_to_leaf(int root = 0) {
Graph res(size());
std::vector<int> chk(size(), 0);
chk[root] = 1;
auto dfs = [&](auto self, int now) -> void {
for(auto &e : edges[now]) {
if(chk[e.to] == 1) continue;
chk[e.to] = 1;
res.add_edge(now, e.to, e.cost, 1, 0);
self(self, e.to);
}
};
dfs(dfs, root);
return res;
}
// Ο(V+E)
// directed graph from leaf to root
Graph leaf_to_root(int root = 0) {
Graph res(size());
std::vector<int> chk(size(), 0);
chk[root] = 1;
auto dfs = [&](auto self, int now) -> void {
for(auto &e : edges[now]) {
if(chk[e.to] == 1) continue;
chk[e.to] = 1;
res.add_edge(e.to, now, e.cost, 1, 0);
self(self, e.to);
}
};
dfs(dfs, root);
return res;
}
// long long Chu_Liu_Edmonds(int root = 0) {}
};
struct tree_doubling {
private:
std::vector<std::vector<int>> parent;
std::vector<int> depth;
std::vector<long long> dist;
int max_jump = 1;
void build() {
for(int i = 0; i < max_jump - 1; i++) {
for(int v = 0; v < (int)dist.size(); v++) {
if(parent[i][v] == -1)
parent[i + 1][v] = -1;
else
parent[i + 1][v] = parent[i][parent[i][v]];
}
}
}
public:
tree_doubling() = default;
tree_doubling(const Graph &g, const int root = 0) : dist(g.size()), depth(g.size()) {
int n = g.size();
while((1 << max_jump) < n) max_jump++;
parent.assign(max_jump, std::vector<int>(n, -1));
auto dfs = [&](auto self, int now, int per, int d, long long cost) -> void {
parent[0][now] = per;
depth[now] = d;
dist[now] = cost;
for(auto &e : g[now])
if(e.to != per) self(self, e.to, now, d + 1, cost + e.cost);
};
dfs(dfs, root, -1, 0, 0LL);
build();
}
int lowest_common_ancestor(int u, int v) {
if(depth[u] < depth[v]) std::swap(u, v);
int k = parent.size();
for(int i = 0; i < k; i++)
if((depth[u] - depth[v]) >> i & 1) u = parent[i][u];
if(u == v) return u;
for(int i = k - 1; i >= 0; i--)
if(parent[i][u] != parent[i][v]) u = parent[i][u], v = parent[i][v];
return parent[0][u];
}
long long length_of_path(const int u, const int v) { return dist[u] + dist[v] - dist[lowest_common_ancestor(u, v)] * 2; }
int level_ancestor(int v, int level) {
assert(level >= 0);
for(int jump = 0; jump < max_jump and level; jump++) {
if(level & 1) v = parent[jump][v];
level >>= 1;
}
return v;
}
};
struct strongly_connected_components {
private:
enum { CHECKED = -1,
UNCHECKED = -2 };
const Graph &graph_given;
Graph graph_reversed;
std::vector<int> order, group_number; /* at the beginning of the building, 'group_number' is used as 'checked' */
void dfs(int now) {
if(group_number[now] != UNCHECKED) return;
group_number[now] = CHECKED;
for(auto &e : graph_given[now]) dfs(e.to);
order.push_back(now);
}
void rdfs(int now, int group_count) {
if(group_number[now] != UNCHECKED) return;
group_number[now] = group_count;
for(auto &e : graph_reversed[now]) rdfs(e.to, group_count);
}
void build(bool create_compressed_graph) {
for(int i = 0; i < (int)graph_given.size(); i++) dfs(i);
reverse(order.begin(), order.end());
group_number.assign(graph_given.size(), UNCHECKED);
int group = 0;
for(auto &i : order)
if(group_number[i] == UNCHECKED) rdfs(i, group), group++;
graph_compressed.resize(group);
groups.resize(group);
for(int i = 0; i < (int)graph_given.size(); i++) groups[group_number[i]].push_back(i);
if(create_compressed_graph) {
std::vector<int> edges(group, -1);
for(int i = 0; i < group; i++)
for(auto &vertex : groups[i])
for(auto &e : graph_given[vertex])
if(group_number[e.to] != i and edges[group_number[e.to]] != i) {
edges[group_number[e.to]] = i;
graph_compressed[i].emplace_back(group_number[e.to], 1);
}
}
return;
}
public:
std::vector<std::vector<int>> groups;
Graph graph_compressed;
strongly_connected_components(const Graph &g_, bool create_compressed_graph = false)
: graph_given(g_), graph_reversed(g_.size()), group_number(g_.size(), UNCHECKED) {
for(size_t i = 0; i < g_.size(); i++)
for(auto &e : graph_given[i]) graph_reversed[e.to].emplace_back(i, 1);
build(create_compressed_graph);
}
const int &operator[](const int k) { return group_number[k]; }
};
struct low_link {
private:
const Graph &graph_given;
int order_next;
void build() {
int n = graph_given.size();
order.resize(n, -1);
low.resize(n);
order_next = 0;
for(int i = 0; i < n; i++)
if(order[i] == -1) dfs(i);
}
void dfs(int now, int par = -1) {
low[now] = order[now] = order_next++;
bool is_articulation = false;
int cnt = 0, cnt_par = 0;
for(const auto &ed : graph_given[now]) {
const int &nxt = ed.to;
if(order[nxt] == -1) {
cnt++;
dfs(nxt, now);
if(order[now] < low[nxt]) bridge.push_back(std::minmax(now, nxt));
if(order[now] <= low[nxt]) is_articulation = true;
low[now] = std::min(low[now], low[nxt]);
} else if(nxt != par or cnt_par++ == 1) {
low[now] = std::min(low[now], order[nxt]);
}
}
if(par == -1 and cnt < 2) is_articulation = false;
if(is_articulation) articulation.push_back(now);
return;
}
public:
std::vector<int> order, low, articulation;
std::vector<std::pair<int, int>> bridge;
low_link() = default;
low_link(const Graph &g_) : graph_given(g_) { build(); }
};
struct two_edge_connected_components {
private:
const Graph &graph_given;
int group_next;
low_link li;
std::vector<int> group_number;
void build(bool create_compressed_graph) {
int n = graph_given.size();
group_number.resize(n, -1);
group_next = 0;
for(int i = 0; i < n; i++)
if(group_number[i] == -1) dfs(i);
groups.resize(group_next);
for(int i = 0; i < graph_given.size(); i++) groups[group_number[i]].push_back(i);
if(create_compressed_graph) {
graph_compressed.resize(group_next);
for(const auto &[u, v] : li.bridge) {
int x = group_number[u], y = group_number[v];
graph_compressed.add_edge(x, y);
}
}
}
void dfs(int now, int par = -1) {
if(par != -1 and li.order[par] >= li.low[now])
group_number[now] = group_number[par];
else
group_number[now] = group_next++;
for(const auto &e : graph_given[now])
if(group_number[e.to] == -1) dfs(e.to, now);
}
public:
Graph graph_compressed;
std::vector<std::vector<int>> groups;
two_edge_connected_components(const Graph &g_, bool create_compressed_graph = false)
: graph_given(g_), li(g_) {
build(create_compressed_graph);
}
const int &operator[](const int k) { return group_number[k]; }
};
struct heavy_light_decomposition {
public:
std::vector<int> sz, in, out, head, rev, par;
private:
Graph &g;
void dfs_sz(int v, int p = -1) {
par[v] = p;
if(!g[v].empty() and g[v].front().to == p) std::swap(g[v].front(), g[v].back());
for(auto &e : g[v]) {
if(e.to == p) continue;
dfs_sz(e.to, v);
sz[v] += sz[e.to];
if(sz[g[v].front().to] < sz[e.to]) std::swap(g[v].front(), e);
}
}
void dfs_hld(int v, int &t, int p = -1) {
in[v] = t++;
rev[in[v]] = v;
for(auto &e : g[v]) {
if(e.to == p) continue;
head[e.to] = (g[v].front().to == e.to ? head[v] : e.to);
dfs_hld(e.to, t, v);
}
out[v] = t;
}
void build(int root = 0) {
dfs_sz(root);
int t = 0;
head[root] = root;
dfs_hld(root, t);
}
public:
heavy_light_decomposition(Graph &g_, int root = 0) : g(g_) {
int n = g.size();
sz.resize(n, 1);
in.resize(n);
out.resize(n);
head.resize(n);
rev.resize(n);
par.resize(n);
build(root);
}
int level_ancestor(int v, int level) {
while(true) {
int u = head[v];
if(in[v] - level >= in[u]) return rev[in[v] - level];
level -= in[v] - in[u] + 1;
v = par[u];
}
}
int lowest_common_ancestor(int u, int v) {
for(;; v = par[head[v]]) {
if(in[u] > in[v]) std::swap(u, v);
if(head[u] == head[v]) return u;
}
}
// u, v: vertex, unit: unit, q: query on a path, f: binary operation ((T, T) -> T)
template <typename T, typename Q, typename F>
T query(int u, int v, const T &unit, const Q &q, const F &f, bool edge = false) {
T l = unit, r = unit;
for(;; v = par[head[v]]) {
if(in[u] > in[v]) std::swap(u, v), std::swap(l, r);
if(head[u] == head[v]) break;
l = f(q(in[head[v]], in[v] + 1), l);
}
return f(f(q(in[u] + edge, in[v] + 1), l), r);
}
// u, v: vertex, q: update query
template <typename Q>
void add(int u, int v, const Q &q, bool edge = false) {
for(;; v = par[head[v]]) {
if(in[u] > in[v]) std::swap(u, v);
if(head[u] == head[v]) break;
q(in[head[v]], in[v] + 1);
}
q(in[u] + edge, in[v] + 1);
}
std::pair<int, int> subtree(int v, bool edge = false) { return std::pair<int, int>(in[v] + edge, out[v]); }
};
#pragma endregion
int min_cost;
int main() {
int n, m;
cin >> n >> m;
vector<int> s(m), t(m), d(m);
for(int i = 0; i < m; i++)
cin >> s[i] >> t[i] >> d[i], --s[i], --t[i];
auto judge = [&](int mid) {
Graph G(n);
for(int i = 0; i < m; i++)
if(d[i] >= mid) G.add_edge(s[i], t[i]);
auto dist = G.bfs(0)[n - 1];
if(dist < G.INF) {
min_cost = dist;
return true;
} else
return false;
};
int ok = 0, ng = 2000000000, mid;
while(mid = (ok + ng) / 2, abs(ok - ng) > 1) (judge(mid) ? ok : ng) = mid;
cout << ok << " " << min_cost << endl;
return 0;
}
nok0