結果
問題 | No.802 だいたい等差数列 |
ユーザー | yuruhiya |
提出日時 | 2021-04-04 10:08:49 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 37,155 bytes |
コンパイル時間 | 8,293 ms |
コンパイル使用メモリ | 633,672 KB |
実行使用メモリ | 50,432 KB |
最終ジャッジ日時 | 2024-06-08 01:40:33 |
合計ジャッジ時間 | 18,374 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 93 ms
50,304 KB |
testcase_01 | AC | 93 ms
50,304 KB |
testcase_02 | AC | 92 ms
50,304 KB |
testcase_03 | AC | 93 ms
50,176 KB |
testcase_04 | AC | 95 ms
50,304 KB |
testcase_05 | AC | 93 ms
50,304 KB |
testcase_06 | AC | 91 ms
50,304 KB |
testcase_07 | AC | 92 ms
50,304 KB |
testcase_08 | AC | 96 ms
50,176 KB |
testcase_09 | AC | 93 ms
50,304 KB |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | RE | - |
testcase_13 | RE | - |
testcase_14 | AC | 96 ms
50,304 KB |
testcase_15 | AC | 92 ms
50,304 KB |
testcase_16 | AC | 97 ms
50,304 KB |
testcase_17 | AC | 93 ms
50,304 KB |
testcase_18 | AC | 99 ms
50,304 KB |
testcase_19 | AC | 96 ms
50,304 KB |
testcase_20 | AC | 99 ms
50,304 KB |
testcase_21 | AC | 96 ms
50,304 KB |
testcase_22 | RE | - |
testcase_23 | AC | 95 ms
50,304 KB |
testcase_24 | RE | - |
testcase_25 | AC | 93 ms
50,304 KB |
testcase_26 | AC | 99 ms
50,176 KB |
testcase_27 | RE | - |
testcase_28 | AC | 104 ms
50,304 KB |
testcase_29 | AC | 95 ms
50,176 KB |
testcase_30 | AC | 97 ms
50,176 KB |
testcase_31 | AC | 92 ms
50,432 KB |
testcase_32 | AC | 93 ms
50,304 KB |
testcase_33 | AC | 95 ms
50,304 KB |
ソースコード
#line 2 "/home/yuruhiya/programming/library/Utility/get_MOD.cpp" constexpr long long get_MOD() { #ifdef SET_MOD return SET_MOD; #else return 1000000007; #endif } #line 3 "/home/yuruhiya/programming/library/Utility/constants.cpp" #include <vector> #include <string> #include <utility> #include <queue> #define rep(i, n) for (int i = 0; i < (n); ++i) #define FOR(i, m, n) for (int i = (m); i < (n); ++i) #define rrep(i, n) for (int i = (n)-1; i >= 0; --i) #define rfor(i, m, n) for (int i = (m); i >= (n); --i) #define loop(n) rep(i##__COUNTER__, n) #define unless(c) if (!(c)) #define ALL(x) (x).begin(), (x).end() #define RALL(x) (x).rbegin(), (x).rend() #define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r) using ll = long long; using LD = long double; using VB = std::vector<bool>; using VVB = std::vector<VB>; using VI = std::vector<int>; using VVI = std::vector<VI>; using VL = std::vector<ll>; using VVL = std::vector<VL>; using VS = std::vector<std::string>; using VD = std::vector<LD>; using PII = std::pair<int, int>; using VP = std::vector<PII>; using PLL = std::pair<ll, ll>; using VPL = std::vector<PLL>; template <class T> using PQ = std::priority_queue<T>; template <class T> using PQS = std::priority_queue<T, std::vector<T>, std::greater<T>>; constexpr int inf = 1000000000; constexpr long long inf_ll = 1000000000000000000ll, MOD = get_MOD(); constexpr long double PI = 3.14159265358979323846, EPS = 1e-12; #line 2 "/home/yuruhiya/programming/library/Utility/Scanner.cpp" #include <iostream> #line 6 "/home/yuruhiya/programming/library/Utility/Scanner.cpp" #include <tuple> #include <type_traits> #ifdef _WIN32 #define getchar_unlocked _getchar_nolock #define putchar_unlocked _putchar_nolock #define fwrite_unlocked fwrite #define fflush_unlocked fflush #endif class Scanner { static int gc() { return getchar_unlocked(); } static char next_char() { char c; scan(c); return c; } template <class T> static void scan(T& v) { std::cin >> v; } static void scan(char& v) { while (std::isspace(v = gc())) ; } static void scan(bool& v) { v = next_char() != '0'; } static void scan(std::vector<bool>::reference v) { bool b; scan(b); v = b; } static void scan(std::string& v) { v.clear(); for (char c = next_char(); !std::isspace(c); c = gc()) v += c; } static void scan(int& v) { v = 0; bool neg = false; char c = next_char(); if (c == '-') { neg = true; c = gc(); } for (; std::isdigit(c); c = gc()) v = v * 10 + (c - '0'); if (neg) v = -v; } static void scan(long long& v) { v = 0; bool neg = false; char c = next_char(); if (c == '-') { neg = true; c = gc(); } for (; std::isdigit(c); c = gc()) v = v * 10 + (c - '0'); if (neg) v = -v; } static void scan(double& v) { v = 0; double dp = 1; bool neg = false, after_dp = false; char c = next_char(); if (c == '-') { neg = true; c = gc(); } for (; std::isdigit(c) || c == '.'; c = gc()) { if (c == '.') { after_dp = true; } else if (after_dp) { v += (c - '0') * (dp *= 0.1); } else { v = v * 10 + (c - '0'); } } if (neg) v = -v; } static void scan(long double& v) { v = 0; long double dp = 1; bool neg = false, after_dp = false; char c = next_char(); if (c == '-') { neg = true; c = gc(); } for (; std::isdigit(c) || c == '.'; c = gc()) { if (c == '.') { after_dp = true; } else if (after_dp) { v += (c - '0') * (dp *= 0.1); } else { v = v * 10 + (c - '0'); } } if (neg) v = -v; } template <class T, class U> static void scan(std::pair<T, U>& v) { scan(v.first); scan(v.second); } template <class T, std::enable_if_t<!std::is_same_v<bool, T>, std::nullptr_t> = nullptr> static void scan(std::vector<T>& v) { for (auto& e : v) scan(e); } template <class T, std::enable_if_t<std::is_same_v<bool, T>, std::nullptr_t> = nullptr> static void scan(std::vector<T>& v) { for (auto e : v) scan(e); } template <std::size_t N = 0, class T> static void scan_tuple_impl(T& v) { if constexpr (N < std::tuple_size_v<T>) { scan(std::get<N>(v)); scan_tuple_impl<N + 1>(v); } } template <class... T> static void scan(std::tuple<T...>& v) { scan_tuple_impl(v); } struct Read2DVectorHelper { std::size_t h, w; Read2DVectorHelper(std::size_t _h, std::size_t _w) : h(_h), w(_w) {} template <class T> operator std::vector<std::vector<T>>() { std::vector vector(h, std::vector<T>(w)); scan(vector); return vector; } }; struct ReadVectorHelper { std::size_t n; ReadVectorHelper(std::size_t _n) : n(_n) {} template <class T> operator std::vector<T>() { std::vector<T> vector(n); scan(vector); return vector; } auto operator[](std::size_t m) { return Read2DVectorHelper(n, m); } }; public: template <class T> T read() const { T result; scan(result); return result; } template <class T> auto read(std::size_t n) const { std::vector<T> result(n); scan(result); return result; } template <class T> auto read(std::size_t h, std::size_t w) const { std::vector result(h, std::vector<T>(w)); scan(result); return result; } std::string read_line() const { std::string v; for (char c = gc(); c != '\n' && c != '\0'; c = gc()) v += c; return v; } template <class T> operator T() const { return read<T>(); } int operator--(int) const { return read<int>() - 1; } auto operator[](std::size_t n) const { return ReadVectorHelper(n); } auto operator[](const std::pair<std::size_t, std::size_t>& nm) const { return Read2DVectorHelper(nm.first, nm.second); } void operator()() const {} template <class H, class... T> void operator()(H&& h, T&&... t) const { scan(h); operator()(std::forward<T>(t)...); } private: template <template <class...> class, class...> struct Column; template <template <class...> class V, class Head, class... Tail> struct Column<V, Head, Tail...> { template <class... Args> using vec = V<std::vector<Head>, Args...>; using type = typename Column<vec, Tail...>::type; }; template <template <class...> class V> struct Column<V> { using type = V<>; }; template <class... T> using column_t = typename Column<std::tuple, T...>::type; template <std::size_t N = 0, class T> void column_impl(T& t) const { if constexpr (N < std::tuple_size_v<T>) { auto& vec = std::get<N>(t); using V = typename std::remove_reference_t<decltype(vec)>::value_type; vec.push_back(read<V>()); column_impl<N + 1>(t); } } public: template <class... T> auto column(std::size_t h) const { column_t<T...> result; while (h--) column_impl(result); return result; } } in; #define inputs(T, ...) \ T __VA_ARGS__; \ in(__VA_ARGS__) #define ini(...) inputs(int, __VA_ARGS__) #define inl(...) inputs(long long, __VA_ARGS__) #define ins(...) inputs(std::string, __VA_ARGS__) #line 5 "/home/yuruhiya/programming/library/Utility/Printer.cpp" #include <array> #line 7 "/home/yuruhiya/programming/library/Utility/Printer.cpp" #include <string_view> #include <optional> #include <charconv> #include <cstring> #include <cassert> class Printer { public: struct BoolString { std::string_view t, f; BoolString(std::string_view _t, std::string_view _f) : t(_t), f(_f) {} }; struct Separator { std::string_view div, sep, last; Separator(std::string_view _div, std::string_view _sep, std::string_view _last) : div(_div), sep(_sep), last(_last) {} }; inline static const BoolString Yes{"Yes", "No"}, yes{"yes", "no"}, YES{"YES", "NO"}, Int{"1", "0"}, Possible{"Possible", "Impossible"}; inline static const Separator space{" ", " ", "\n"}, no_space{"", "", "\n"}, endl{"\n", "\n", "\n"}, comma{",", ",", "\n"}, no_endl{" ", " ", ""}, sep_endl{" ", "\n", "\n"}; BoolString bool_str{Yes}; Separator separator{space}; void print(int v) const { char buf[12]{}; if (auto [ptr, e] = std::to_chars(std::begin(buf), std::end(buf), v); e == std::errc{}) { print(std::string_view(buf, ptr - buf)); } else { assert(false); } } void print(long long v) const { char buf[21]{}; if (auto [ptr, e] = std::to_chars(std::begin(buf), std::end(buf), v); e == std::errc{}) { print(std::string_view(buf, ptr - buf)); } else { assert(false); } } void print(bool v) const { print(v ? bool_str.t : bool_str.f); } void print(std::vector<bool>::reference v) const { print(v ? bool_str.t : bool_str.f); } void print(char v) const { putchar_unlocked(v); } void print(std::string_view v) const { fwrite_unlocked(v.data(), sizeof(std::string_view::value_type), v.size(), stdout); } void print(double v) const { std::printf("%.20f", v); } void print(long double v) const { std::printf("%.20Lf", v); } template <class T> void print(const T& v) const { std::cout << v; } template <class T, class U> void print(const std::pair<T, U>& v) const { print(v.first); print(separator.div); print(v.second); } template <class T> void print(const std::optional<T>& v) const { print(*v); } template <class InputIterater> void print_range(const InputIterater& begin, const InputIterater& end) const { for (InputIterater i = begin; i != end; ++i) { if (i != begin) print(separator.sep); print(*i); } } template <class T> void print(const std::vector<T>& v) const { print_range(v.begin(), v.end()); } template <class T, std::size_t N> void print(const std::array<T, N>& v) const { print_range(v.begin(), v.end()); } template <class T> void print(const std::vector<std::vector<T>>& v) const { for (std::size_t i = 0; i < v.size(); ++i) { if (i) print(separator.last); print(v[i]); } } Printer() = default; Printer(const BoolString& _bool_str, const Separator& _separator) : bool_str(_bool_str), separator(_separator) {} Printer& operator()() { print(separator.last); return *this; } template <class Head> Printer& operator()(Head&& head) { print(head); print(separator.last); return *this; } template <class Head, class... Tail> Printer& operator()(Head&& head, Tail&&... tail) { print(head); print(separator.sep); return operator()(std::forward<Tail>(tail)...); } template <class... Args> Printer& flag(bool f, Args&&... args) { if (f) { return operator()(std::forward<Args>(args)...); } else { return *this; } } template <class InputIterator> Printer& range(const InputIterator& begin, const InputIterator& end) { print_range(begin, end); print(separator.last); return *this; } template <class Container> Printer& range(const Container& a) { range(a.begin(), a.end()); return *this; } template <class... T> void exit(T&&... t) { operator()(std::forward<T>(t)...); std::exit(EXIT_SUCCESS); } Printer& flush() { fflush_unlocked(stdout); return *this; } Printer& set(const BoolString& _bool_str) { bool_str = _bool_str; return *this; } Printer& set(const Separator& _separator) { separator = _separator; return *this; } Printer& set(std::string_view t, std::string_view f) { bool_str = BoolString(t, f); return *this; } } out; #line 3 "/home/yuruhiya/programming/library/Utility/Step.cpp" #include <iterator> #include <algorithm> #line 6 "/home/yuruhiya/programming/library/Utility/Step.cpp" template <class T> class step_iterator { public: using value_type = T; using difference_type = T; using iterator_category = std::random_access_iterator_tag; using reference = T&; using pointer = T*; private: value_type start_m, size_m, step_m, index_m; public: constexpr step_iterator() : start_m(value_type()), size_m(value_type()), step_m(value_type()), index_m(0) {} constexpr step_iterator(value_type _start, value_type _size, value_type _step) : start_m(_start), size_m(_size), step_m(_step), index_m(0) {} value_type operator*() const noexcept { return value(); } step_iterator& operator++() noexcept { ++index_m; return *this; } step_iterator& operator++(int) noexcept { auto tmp = *this; ++*this; return tmp; } step_iterator& operator--() noexcept { --index_m; return *this; } step_iterator& operator--(int) noexcept { auto tmp = *this; --*this; return tmp; } step_iterator& operator+=(difference_type n) { index_m += n; return *this; } step_iterator operator+(difference_type n) const { return step_iterator(*this) += n; } friend step_iterator operator+(difference_type n, step_iterator i) { return i + n; } step_iterator& operator-=(difference_type n) { index_m -= n; return *this; } step_iterator operator-(difference_type n) const { return step_iterator(*this) -= n; } friend step_iterator operator-(difference_type n, step_iterator i) { return i - n; } difference_type operator-(const step_iterator& other) const { assert(start_m == other.start_m); assert(size_m == other.size_m); assert(step_m == other.step_m); return index_m - other.index_m; } bool operator==(const step_iterator& other) const noexcept { return value() == other.value(); } bool operator!=(const step_iterator& other) const noexcept { return value() != other.value(); } bool operator<(const step_iterator& other) const noexcept { return value() < other.value(); } bool operator<=(const step_iterator& other) const noexcept { return value() <= other.value(); } bool operator>(const step_iterator& other) const noexcept { return value() > other.value(); } bool operator>=(const step_iterator& other) const noexcept { return value() >= other.value(); } constexpr value_type value() const noexcept { return start_m + step_m * index_m; } }; template <class T> class Step { public: using value_type = T; using iterator = step_iterator<value_type>; private: value_type start_m, size_m, step_m; public: constexpr Step(value_type _start, value_type _size, value_type _step) : start_m(_start), size_m(std::max<value_type>(0, _size)), step_m(_step) {} constexpr iterator begin() const { return iterator(start_m, size_m, step_m); } constexpr iterator end() const { return iterator(start_m, size_m, step_m) + size_m; } constexpr value_type start() const { return start_m; } constexpr value_type size() const { return size_m; } constexpr value_type step() const { return step_m; } constexpr value_type sum() const { return start() * size() + step() * (size() * (size() - 1) / 2); } operator std::vector<value_type>() const { return to_a(); } auto to_a() const { std::vector<value_type> result; result.reserve(size()); for (auto i : *this) { result.push_back(i); } return result; } }; template <class T> constexpr auto upto(T from, T to, bool exclusive = true) { return Step<T>(from, to - from + exclusive, 1); } template <class T> constexpr auto downto(T from, T to, bool exclusive = true) { return Step<T>(from, from - to + exclusive, -1); } template <class T> constexpr auto times(T n, bool exclusive = false) { return Step<T>(0, n + static_cast<T>(exclusive), 1); } #line 4 "/home/yuruhiya/programming/library/Utility/Ruby.cpp" #include <map> #line 6 "/home/yuruhiya/programming/library/Utility/Ruby.cpp" #include <numeric> #line 9 "/home/yuruhiya/programming/library/Utility/Ruby.cpp" template <class F> struct Callable { F func; Callable(const F& f) : func(f) {} }; template <class T, class F> auto operator|(const T& v, const Callable<F>& c) { return c.func(v); } struct Sort_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { std::sort(std::begin(v), std::end(v), f); return v; }); } template <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) { std::sort(std::begin(v), std::end(v)); return v; } } Sort; struct SortBy_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { std::sort(std::begin(v), std::end(v), [&](const auto& i, const auto& j) { return f(i) < f(j); }); return v; }); } } SortBy; struct RSort_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { std::sort(rbegin(v), rend(v), f); return v; }); } template <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) { std::sort(rbegin(v), rend(v)); return v; } } RSort; struct RSortBy_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { std::sort(std::begin(v), std::end(v), [&](const auto& i, const auto& j) { return f(i) > f(j); }); return v; }); } } RSortBy; struct Reverse_impl { template <class T> friend auto operator|(T v, const Reverse_impl& c) { std::reverse(std::begin(v), std::end(v)); return v; } } Reverse; struct Unique_impl { template <class T> friend auto operator|(T v, const Unique_impl& c) { v.erase(std::unique(std::begin(v), std::end(v), std::end(v))); return v; } template <class T, class F> auto operator()(F&& f) { return Callable([&](auto v) { v.erase(std::unique(std::begin(v), std::end(v), f), std::end(v)); return v; }); } } Unique; struct Uniq_impl { template <class T> friend auto operator|(T v, const Uniq_impl& c) { std::sort(std::begin(v), std::end(v)); v.erase(std::unique(std::begin(v), std::end(v)), std::end(v)); return v; } } Uniq; struct Rotate_impl { auto operator()(int&& left) { return Callable([&](auto v) { int s = static_cast<int>(std::size(v)); assert(-s <= left && left <= s); if (0 <= left) { std::rotate(std::begin(v), std::begin(v) + left, std::end(v)); } else { std::rotate(std::begin(v), std::end(v) + left, std::end(v)); } return v; }); } } Rotate; struct Max_impl { template <class F> auto operator()(F&& f) { return Callable( [&](auto v) { return *std::max_element(std::begin(v), std::end(v), f); }); } template <class T> friend auto operator|(T v, const Max_impl& c) { return *std::max_element(std::begin(v), std::end(v)); } } Max; struct Min_impl { template <class F> auto operator()(F&& f) { return Callable( [&](auto v) { return *std::min_element(std::begin(v), std::end(v), f); }); } template <class T> friend auto operator|(T v, const Min_impl& c) { return *std::min_element(std::begin(v), std::end(v)); } } Min; struct MaxPos_impl { template <class T> friend auto operator|(T v, const MaxPos_impl& c) { return std::max_element(std::begin(v), std::end(v)) - std::begin(v); } } MaxPos; struct MinPos_impl { template <class T> friend auto operator|(T v, const MinPos_impl& c) { return std::min_element(std::begin(v), std::end(v)) - std::begin(v); } } MinPos; struct MaxBy_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { auto max_it = std::begin(v); auto max_val = f(*max_it); for (auto it = std::next(std::begin(v)); it != std::end(v); ++it) { if (auto val = f(*it); max_val < val) { max_it = it; max_val = val; } } return *max_it; }); } } MaxBy; struct MinBy_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { auto min_it = std::begin(v); auto min_val = f(*min_it); for (auto it = std::next(std::begin(v)); it != std::end(v); ++it) { if (auto val = f(*it); min_val > val) { min_it = it; min_val = val; } } return *min_it; }); } } MinBy; struct MaxOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { auto max_val = f(*std::begin(v)); for (auto it = std::next(std::begin(v)); it != std::end(v); ++it) { if (auto val = f(*it); max_val < val) { max_val = val; } } return max_val; }); } } MaxOf; struct MinOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { auto min_val = f(*std::begin(v)); for (auto it = std::next(std::begin(v)); it != std::end(v); ++it) { if (auto val = f(*it); min_val > val) { min_val = val; } } return min_val; }); } } MinOf; struct Count_impl { template <class V> auto operator()(const V& val) { return Callable([&](auto v) { return std::count(std::begin(v), std::end(v), val); }); } } Count; struct CountIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) { return std::count_if(std::begin(v), std::end(v), f); }); } } CountIf; struct Index_impl { template <class V> auto operator()(const V& val) { return Callable([&](auto v) -> std::optional<int> { auto result = std::find(std::begin(v), std::end(v), val); return result != std::end(v) ? std::optional(result - std::begin(v)) : std::nullopt; }); } template <class V> auto operator()(const V& val, std::size_t i) { return Callable([&](auto v) -> std::optional<int> { auto result = std::find(std::next(std::begin(v), i), std::end(v), val); return result != std::end(v) ? std::optional(result - std::begin(v)) : std::nullopt; }); } } Index; struct IndexIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) -> std::optional<int> { auto result = std::find_if(std::begin(v), std::end(v), f); return result != std::end(v) ? std::optional(result - std::begin(v)) : std::nullopt; }); } } IndexIf; struct FindIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) -> std::optional<typename decltype(v)::value_type> { auto result = std::find_if(std::begin(v), std::end(v), f); return result != std::end(v) ? std::optional(*result) : std::nullopt; }); } } FindIf; struct Sum_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { return std::accumulate(std::next(std::begin(v)), std::end(v), f(*std::begin(v)), [&](const auto& a, const auto& b) { return a + f(b); }); }); } template <class T> friend auto operator|(T v, [[maybe_unused]] const Sum_impl& c) { return std::accumulate(std::begin(v), std::end(v), typename T::value_type{}); } } Sum; struct Includes { template <class V> auto operator()(const V& val) { return Callable( [&](auto v) { return std::find(std::begin(v), std::end(v), val) != std::end(v); }); } } Includes; struct IncludesIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) { return std::find_if(std::begin(v), std::end(v), f) != std::end(v); }); } } IncludesIf; struct RemoveIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) { v.erase(std::remove_if(std::begin(v), std::end(v), f), std::end(v)); return v; }); } } RemoveIf; struct Each_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { for (const auto& i : v) { f(i); } }); } } Each; struct EachConsPair_impl { template <class T, class value_type = typename T::value_type> friend auto operator|(const T& v, EachConsPair_impl& c) { std::vector<std::pair<value_type, value_type>> result; if (std::size(v) >= 2) { result.reserve(std::size(v) - 1); for (std::size_t i = 0; i < std::size(v) - 1; ++i) { result.emplace_back(v[i], v[i + 1]); } } return result; } } EachConsPair; struct Select_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { using value_type = typename decltype(v)::value_type; std::vector<value_type> result; for (const auto& i : v) { if (f(i)) result.push_back(i); } return result; }); } } Select; struct Map_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { using result_type = std::invoke_result_t<F, typename decltype(v)::value_type>; std::vector<result_type> result; result.reserve(std::size(v)); for (const auto& i : v) { result.push_back(f(i)); } return result; }); } } Map; struct Indexed_impl { template <class T> friend auto operator|(const T& v, Indexed_impl& c) { using value_type = typename T::value_type; std::vector<std::pair<value_type, int>> result; result.reserve(std::size(v)); int index = 0; for (const auto& i : v) { result.emplace_back(i, index++); } return result; } } Indexed; struct AllOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { for (const auto& i : v) { if (!f(i)) return false; } return true; }); } } AllOf; struct AnyOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { for (const auto& i : v) { if (f(i)) return true; } return false; }); } } AnyOf; struct NoneOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { for (const auto& i : v) { if (f(i)) return false; } return true; }); } } NoneOf; struct Tally_impl { auto operator()(std::size_t max_val) { return Callable([&](auto v) { std::vector<std::size_t> result(max_val); for (const auto& i : v) { result[static_cast<std::size_t>(i)]++; } return result; }); } template <class T, class value_type = typename T::value_type> friend auto operator|(const T& v, Tally_impl& c) { std::map<value_type, std::size_t> result; for (const auto& i : v) { result[i]++; } return result; } } Tally; struct Reduce_impl { template <class T, class F> auto operator()(T memo, F f) { return Callable([memo, f](auto v) { auto acc = memo; for (auto i : v) { acc = f(acc, i); } return acc; }); } } Reduce; struct Join_impl { auto operator()(std::string separater) { return Callable([&](auto v) { std::string result; bool first = true; for (const auto& i : v) { if (!std::exchange(first, false)) { result += separater; } result += std::to_string(i); } return result; }); } template <class T> friend auto operator|(const T& v, Join_impl& c) { return v | c(""); } } Join; struct At_impl { auto operator()(std::size_t l, std::size_t r) { return Callable( [l, r](auto v) { return decltype(v)(std::begin(v) + l, std::begin(v) + r); }); } } At; struct Slice_impl { auto operator()(std::size_t i, std::size_t cnt) { return Callable([i, cnt](auto v) { return decltype(v)(std::begin(v) + i, std::begin(v) + i + cnt); }); } } Slice; struct Transpose_impl { template <class T> friend auto operator|(const std::vector<std::vector<T>>& v, Transpose_impl& c) { std::size_t h = v.size(), w = v.front().size(); std::vector result(w, std::vector<T>(h)); for (std::size_t i = 0; i < h; ++i) { assert(v[i].size() == w); for (std::size_t j = 0; j < w; ++j) { result[j][i] = v[i][j]; } } return result; } } Transpose; template <class T> auto operator*(const std::vector<T>& a, std::size_t n) { T result; for (std::size_t i = 0; i < n; ++i) { result.insert(result.end(), a.begin(), a.end()); } return result; } auto operator*(std::string a, std::size_t n) { std::string result; for (std::size_t i = 0; i < n; ++i) { result += a; } return result; } namespace internal { template <class T, class U, class = void> struct has_push_back : std::false_type {}; template <class T, class U> struct has_push_back<T, U, std::void_t<decltype(std::declval<T>().push_back(std::declval<U>()))>> : std::true_type {}; } // namespace internal template < class Container, class T, std::enable_if_t<internal::has_push_back<Container, T>::value, std::nullptr_t> = nullptr> auto& operator<<(Container& continer, const T& val) { continer.push_back(val); return continer; } template < class Container, class T, std::enable_if_t<internal::has_push_back<Container, T>::value, std::nullptr_t> = nullptr> auto operator+(Container continer, const T& val) { continer << val; return continer; } #line 4 "/home/yuruhiya/programming/library/Utility/functions.cpp" #include <cmath> #line 8 "/home/yuruhiya/programming/library/Utility/functions.cpp" template <class T = long long> constexpr T TEN(std::size_t n) { T result = 1; for (std::size_t i = 0; i < n; ++i) result *= 10; return result; } template < class T, class U, std::enable_if_t<std::is_integral_v<T> && std::is_integral_v<U>, std::nullptr_t> = nullptr> constexpr auto div_ceil(T n, U m) { return (n + m - 1) / m; } template <class T, class U> constexpr auto div_ceil2(T n, U m) { return div_ceil(n, m) * m; } template <class T> constexpr T triangle(T n) { return (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1); } template <class T> constexpr T nC2(T n) { return (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1); } template <class T, class U> constexpr auto middle(const T& l, const U& r) { return l + (r - l) / 2; } template <class T, class U, class V> constexpr bool in_range(const T& v, const U& lower, const V& upper) { return lower <= v && v < upper; } template <class T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> constexpr bool is_square(T n) { T s = std::sqrt(n); return s * s == n || (s + 1) * (s + 1) == n; } template <class T = long long> constexpr T BIT(int b) { return T(1) << b; } template <class T> constexpr int BIT(T x, int i) { return (x & (T(1) << i)) ? 1 : 0; } template <class T> constexpr int Sgn(T x) { return (0 < x) - (0 > x); } template <class T> bool is_leap(T year) { return !(year % 4) && (year % 100 || !(year % 400)); } template <class T, class U, std::enable_if_t<std::is_integral_v<U>, std::nullptr_t> = nullptr> constexpr T Pow(T a, U n) { assert(n >= 0); T result = 1; while (n > 0) { if (n & 1) { result *= a; n--; } else { a *= a; n >>= 1; } } return result; } template <class T, class U, std::enable_if_t<std::is_integral_v<U>, std::nullptr_t> = nullptr> constexpr T Powmod(T a, U n, T mod) { assert(n >= 0); if (a > mod) a %= mod; T result = 1; while (n > 0) { if (n & 1) { result = result * a % mod; n--; } else { a = a * a % mod; n >>= 1; } } return result; } template <class T> bool chmax(T& a, const T& b) { return a < b ? a = b, true : false; } template <class T> bool chmin(T& a, const T& b) { return a > b ? a = b, true : false; } template <class T> int sz(const T& v) { return v.size(); } template <class T, class U> int lower_index(const T& a, const U& v) { return std::lower_bound(a.begin(), a.end(), v) - a.begin(); } template <class T, class U> int upper_index(const T& a, const U& v) { return std::upper_bound(a.begin(), a.end(), v) - a.begin(); } template <class T, class U = typename T::value_type> U Gcdv(const T& v) { return std::accumulate(std::next(v.begin()), v.end(), U(*v.begin()), std::gcd<U, U>); } template <class T, class U = typename T::value_type> U Lcmv(const T& v) { return std::accumulate(std::next(v.begin()), v.end(), U(*v.begin()), std::lcm<U, U>); } template <class T> T& Concat(T& v, const T& vec) { v.insert(v.end(), vec.begin(), vec.end()); return v; } namespace internal { template <class T, std::size_t N> auto make_vector(std::vector<int>& sizes, const T& init) { if constexpr (N == 1) { return std::vector(sizes[0], init); } else { int size = sizes[N - 1]; sizes.pop_back(); return std::vector(size, make_vector<T, N - 1>(sizes, init)); } } } // namespace internal template <class T, std::size_t N> auto make_vector(const int (&sizes)[N], const T& init = T()) { std::vector s(std::rbegin(sizes), std::rend(sizes)); return internal::make_vector<T, N>(s, init); } namespace lambda { auto char_to_int = [](char c) { return c - '0'; }; auto lower_to_int = [](char c) { return c - 'a'; }; auto upper_to_int = [](char c) { return c - 'A'; }; auto int_to_char = [](int i) -> char { return '0' + i; }; auto int_to_lower = [](int i) -> char { return 'a' + i; }; auto int_to_upper = [](int i) -> char { return 'A' + i; }; auto is_odd = [](auto n) { return n % 2 == 1; }; auto is_even = [](auto n) { return n % 2 == 0; }; auto is_positive = [](auto n) { return n > 0; }; auto is_negative = [](auto n) { return n < 0; }; auto increment = [](auto n) { return ++n; }; auto decrement = [](auto n) { return --n; }; auto self = [](const auto& n) { return n; }; auto first = [](const auto& n) { return n.first; }; auto second = [](const auto& n) { return n.second; }; template <class T> auto cast() { return [](const auto& n) { return static_cast<T>(n); }; }; template <class T> auto equal_to(const T& x) { return [x](auto y) { return x == y; }; } template <std::size_t I> auto get() { return [](const auto& n) { return std::get<I>(n); }; } template <class F> auto cmp(F&& f) { return [f](const auto& a, const auto& b) { return f(a) < f(b); }; } } // namespace lambda #line 8 "/home/yuruhiya/programming/library/template.cpp" #if __has_include(<library/dump.hpp>) #include <library/dump.hpp> #define LOCAL #else #define dump(...) ((void)0) #define dump2(...) ((void)0) #endif #line 2 "/home/yuruhiya/programming/library/Utility/oj_local.cpp" template <class T> constexpr T oj_local(const T& oj, const T& local) { #ifndef LOCAL return oj; #else return local; #endif } #line 16 "/home/yuruhiya/programming/library/template.cpp" #include <bits/stdc++.h> #line 7 "/home/yuruhiya/programming/library/math/modint.cpp" template <int MOD> struct modint { using value_type = long long; private: value_type n; public: constexpr static modint factorial(int n) { assert(n >= 0); modint result = 1; for (int i = 1; i <= n; ++i) { result *= i; } return result; } constexpr modint(const value_type x = 0) : n(x % MOD) { if (n < 0) n += MOD; } constexpr value_type value() const { return n; } constexpr int mod() const { return MOD; } constexpr modint operator+() const { return *this; } constexpr modint operator-() const { return n ? MOD - n : 0; } constexpr modint& operator++() { if (MOD <= ++n) n = 0; return *this; } constexpr modint& operator--() { if (n <= 0) n = MOD; n--; return *this; } constexpr modint operator++(int) { modint t = *this; ++*this; return t; } constexpr modint operator--(int) { modint t = *this; --*this; return t; } constexpr modint next() const { return ++modint(*this); } constexpr modint pred() const { return --modint(*this); } constexpr modint& operator+=(const modint& m) { n += m.n; if (n >= MOD) n -= MOD; return *this; } constexpr modint& operator-=(const modint& m) { n -= m.n; if (n < 0) n += MOD; return *this; } constexpr modint& operator*=(const modint& m) { n = n * m.n % MOD; return *this; } constexpr modint& operator/=(const modint& m) { value_type a = m.n, b = MOD, u = 1, v = 0; while (b) { value_type t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } n = n * u % MOD; if (n < 0) n += MOD; return *this; } constexpr bool operator==(const modint& m) const { return n == m.n; } constexpr bool operator!=(const modint& m) const { return n != m.n; } template <class M> constexpr modint pow(M m) const { if (0 <= m) { modint t = n, result = 1; while (m > 0) { if (m & 1) { result *= t; m--; } else { t *= t; m >>= 1; } } return result; } else { return (modint(1) / n).pow(-m); } } friend constexpr modint operator+(const modint& a, const modint& b) { return modint(a) += b; } friend constexpr modint operator-(const modint& a, const modint& b) { return modint(a) -= b; } friend constexpr modint operator*(const modint& a, const modint& b) { return modint(a) *= b; } friend constexpr modint operator/(const modint& a, const modint& b) { return modint(a) /= b; } friend std::ostream& operator<<(std::ostream& os, const modint<MOD>& m) { return os << m.value(); } friend std::istream& operator>>(std::istream& is, modint<MOD>& m) { modint<MOD>::value_type x; is >> x; m = modint(x); return is; } }; using mint = modint<get_MOD()>; using VM = std::vector<mint>; mint operator""_m(unsigned long long n) { return n; } #line 4 "/home/yuruhiya/programming/library/math/Combination.cpp" template <int MOD, std::size_t N> class Combination { using value_type = modint<MOD>; std::array<value_type, N + 1> fac, finv, inv; public: constexpr Combination() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (std::size_t i = 2; i <= N; ++i) { fac[i] = fac[i - 1] * i; inv[i] = -inv[MOD % i] * (MOD / i); finv[i] = finv[i - 1] * inv[i]; } } constexpr value_type P(int n, int r) const { return (n < r || n < 0 || r < 0) ? 0 : fac[n] * finv[n - r]; } constexpr value_type C(int n, int r) const { return (n < r || n < 0 || r < 0) ? 0 : fac[n] * finv[r] * finv[n - r]; } constexpr value_type H(int n, int r) const { return (n < 0 || r < 0) ? 0 : r == 0 ? 1 : C(n + r - 1, r); } constexpr value_type fact(int n) const { return fac[n]; } }; #line 4 "a.cpp" using namespace std; Combination<MOD, 2000009> C; int main() { ini(n, m, d1, d2); ll d = d2 - d1; ll sum = m - d1 * (n - 1) - 1; mint ans = C.C(sum + n, sum); for (int x : upto(1, n - 1)) { ll sum2 = sum - (d + 1) * x; mint val = C.C(n - 1, x) * C.C(sum2 + n, sum2); if (x % 2 == 1) { ans -= val; } else { ans += val; } } out(ans); }