結果
問題 | No.1075 木の上の山 |
ユーザー | Yoshitake Matsumoto |
提出日時 | 2021-04-04 15:18:40 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 146 ms / 2,000 ms |
コード長 | 5,481 bytes |
コンパイル時間 | 5,468 ms |
コンパイル使用メモリ | 245,484 KB |
実行使用メモリ | 66,176 KB |
最終ジャッジ日時 | 2024-12-27 18:39:19 |
合計ジャッジ時間 | 9,181 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 3 ms
5,248 KB |
testcase_04 | AC | 3 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 5 ms
5,248 KB |
testcase_08 | AC | 5 ms
5,248 KB |
testcase_09 | AC | 6 ms
5,248 KB |
testcase_10 | AC | 5 ms
5,248 KB |
testcase_11 | AC | 5 ms
5,248 KB |
testcase_12 | AC | 6 ms
5,248 KB |
testcase_13 | AC | 7 ms
5,248 KB |
testcase_14 | AC | 6 ms
5,248 KB |
testcase_15 | AC | 8 ms
5,248 KB |
testcase_16 | AC | 7 ms
5,248 KB |
testcase_17 | AC | 126 ms
50,432 KB |
testcase_18 | AC | 143 ms
66,176 KB |
testcase_19 | AC | 131 ms
50,560 KB |
testcase_20 | AC | 146 ms
66,176 KB |
testcase_21 | AC | 136 ms
50,560 KB |
testcase_22 | AC | 127 ms
50,432 KB |
testcase_23 | AC | 132 ms
50,432 KB |
testcase_24 | AC | 129 ms
50,432 KB |
testcase_25 | AC | 133 ms
50,432 KB |
testcase_26 | AC | 143 ms
58,240 KB |
testcase_27 | AC | 137 ms
50,688 KB |
testcase_28 | AC | 128 ms
50,432 KB |
testcase_29 | AC | 133 ms
50,432 KB |
testcase_30 | AC | 142 ms
55,680 KB |
testcase_31 | AC | 135 ms
50,432 KB |
ソースコード
#include <bits/stdc++.h> constexpr int DEBUG = 0; using namespace std; using int64 = long long; #define REPEAT(i, l, r) for (int i = (int)(l); i < (int)(r); i++) constexpr int P = 1E9 + 7; class FF { private: int64 x_; void Normalize() { if (0 <= x_ && x_ < P) { return; } x_ %= P; if (x_ < 0) { x_ += P; } } public: FF(int64 x) : x_(x) { Normalize(); } FF() : x_(0) {} int64 Value() const { return x_; } FF operator+(FF o) const { FF r(*this); r += o; return r; } FF operator-(FF o) const { FF r(*this); r -= o; return r; } FF operator* (FF o) const { FF r(*this); r *= o; return r; } FF operator/ (FF o) const { return (*this) * o.Power(P - 2); } void operator+= (FF o) { x_ += o.x_; if (x_ >= P) x_ -= P; } void operator-= (FF o) { x_ -= o.x_; if (x_ < 0) x_ += P; } void operator*= (FF o) { x_ = (x_ * o.x_) % P; } FF Power(int64 p) const { if (p < 0) { return FF(1) / Power(-p); } FF x(*this), r(1); while (p) { if (p % 2) { r *= x; } x *= x; p /= 2; } return r; } }; ostream& operator<<(ostream& s, const FF& x) { s << x.Value(); return s; } struct Edge { int from, to; Edge(int from, int to) : from(from), to(to) {} }; vector<vector<Edge>> ReadUndirectedGraph(int n, int m, bool one_indexed=false) { vector<vector<Edge>> graph(n); for (int i = 0; i < m; i++) { int v1, v2; cin >> v1 >> v2; if (one_indexed) { v1--; v2--; } graph[v1].push_back(Edge(v1, v2)); graph[v2].push_back(Edge(v2, v1)); } return graph; } tuple<vector<int>, vector<int>> BFS(const vector<vector<Edge>>& graph, int s) { int n = graph.size(); deque<int> queue; queue.push_back(s); vector<int> ds(n, INT_MAX); vector<int> ps(n, -1); ds[s] = 0; while (!queue.empty()) { int v = queue.front(); queue.pop_front(); for (const auto& e : graph[v]) { if (ds[e.to] < INT_MAX) continue; ds[e.to] = ds[v] + 1; ps[e.to] = v; queue.push_back(e.to); } } return make_tuple(ds, ps); } // Returns a list of F(T_i) where T_i is a re-rooted tree with the root i. // F should satisfy the following recursion. // F(S) = // vertex_fn(merge_fn(edge_fn(F(S_1), e_1), ..., edge_fn(F(S_m), e_m)), v) // where // S: A subtree of T_i. // v: A root of S. // S_k: The k-th subtree of S. // e_k: An edge which connects v and S_k. // // merge_fn is a commutative monoid. merge_id is an identitiy of the monoid. // Verified: ABC160F template<class T> vector<T> ReRooting( const vector<vector<Edge>>& graph, function<T(T, Edge)> edge_fn, function<T(T, T)> merge_fn, T merge_id, function<T(T, int)> vertex_fn) { int n = graph.size(); vector<int> vs({0}), ps(n, -2); ps[0] = -1; queue<int> q; q.push(0); while (!q.empty()) { int v = q.front(); q.pop(); for (const auto& e : graph[v]) { if (e.to == ps[e.to] || ps[e.to] >= -1) continue; vs.push_back(e.to); ps[e.to] = v; q.push(e.to); } } vector<T> dp_1(n); for (int i = n - 1; i >= 0; i--) { int v = vs[i]; int p = ps[v]; auto a = merge_id; for (const auto& e : graph[v]) { if (e.to == ps[v]) continue; a = merge_fn(a, edge_fn(dp_1[e.to], e)); } dp_1[v] = vertex_fn(a, v); } vector<T> dp_2(n), dp_3(n); dp_2[0] = merge_id; for (int i = 0; i < n; i++) { int v = vs[i]; int p = ps[v]; int m = graph[v].size(); vector<T> ls(m + 1), rs(m + 1); ls[0] = merge_id; for (int j = 0; j < m; j++) { const auto& e = graph[v][j]; if (e.to == p) ls[j + 1] = ls[j]; else ls[j + 1] = merge_fn(ls[j], edge_fn(dp_1[e.to], e)); } rs[m] = merge_id; for (int j = m - 1; j >= 0; j--) { const auto& e = graph[v][j]; if (e.to == p) rs[j] = rs[j + 1]; else rs[j] = merge_fn(rs[j + 1], edge_fn(dp_1[e.to], e)); } dp_3[v] = vertex_fn(merge_fn(ls[m], dp_2[v]), v); for (int j = 0; j < m; j++) { const auto& e = graph[v][j]; if (e.to == p) continue; for (const auto& re : graph[e.to]) { if (re.to != v) continue; T merged = merge_fn(merge_fn(ls[j], rs[j + 1]), dp_2[v]); dp_2[e.to] = edge_fn(vertex_fn(merged, v), re); } } } return dp_3; } int main() { ios::sync_with_stdio(false); cin.tie(0); int n, k; cin >> n >> k; auto graph = ReadUndirectedGraph(n, n - 1, true); vector<int> ds; tie(ds, ignore) = BFS(graph, 0); using T = tuple<vector<FF>, vector<FF>>; auto edge_fn = [&](T tuple, const Edge& e) -> T { const auto& [fs, gs] = tuple; vector<FF> c_fs(k), c_gs(k); c_fs[0] = fs[0]; for (int i = 1; i < k; i++) { c_fs[i] = c_fs[i - 1] + fs[i]; } for (int i = 0; i < k; i++) { if (i > 0) { c_gs[i] = c_fs[i - 1]; } if (ds[e.from] < ds[e.to]) { c_gs[i] += gs[i]; } } return make_tuple(c_fs, c_gs); }; auto merge_fn = [&](T t1, T t2) -> T { const auto& [fs_1, gs_1] = t1; const auto& [fs_2, gs_2] = t2; vector<FF> fs_3(k), gs_3(k); for (int i = 0; i < k; i++) { fs_3[i] = fs_1[i] * fs_2[i]; gs_3[i] = gs_1[i] * gs_2[i]; } return make_tuple(fs_3, gs_3); }; auto merge_id = make_tuple(vector<FF>(k, 1), vector<FF>(k, 1)); auto vertex_fn = [](T t, int v) -> T { return t; }; const auto& result = ReRooting<T>(graph, edge_fn, merge_fn, merge_id, vertex_fn); FF ans = 0; for (int i = 0; i < n; i++) { const auto& [fs, gs] = result[i]; for (int j = 0; j < k; j++) { ans += gs[j]; } } cout << ans << endl; }