結果
問題 | No.1441 MErGe |
ユーザー |
![]() |
提出日時 | 2021-04-05 21:26:24 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 6,113 bytes |
コンパイル時間 | 3,093 ms |
コンパイル使用メモリ | 204,360 KB |
最終ジャッジ日時 | 2025-01-20 12:01:44 |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 23 TLE * 5 |
ソースコード
#include "bits/stdc++.h" #define MOD 1000000007 #define rep(i, n) for(ll i=0; i < (n); i++) #define rrep(i, n) for(ll i=(n)-1; i >=0; i--) #define ALL(v) v.begin(),v.end() #define rALL(v) v.rbegin(),v.rend() #define FOR(i, j, k) for(ll i=j;i<k;i++) #define debug_print(var) cerr << #var << "=" << var <<endl; #define DUMP(i, v)for(ll i=0;i<v.size();i++)cerr<<v[i]<<" " #define fi first #define se second using namespace std; typedef long long int ll; typedef vector<ll> llvec; typedef vector<double> dvec; typedef pair<ll, ll> P; typedef long double ld; struct edge{ll x, c;}; template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S), F (*composition)(F, F), F (*id)()> struct lazy_segtree { public: int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } lazy_segtree() : lazy_segtree(0) {} lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {} lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) { log = ceil_pow2(_n); size = 1 << log; d = std::vector<S>(2 * size, e()); lz = std::vector<F>(size, id()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return d[p]; } S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); if (l == r) return e(); l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push(r >> i); } S sml = e(), smr = e(); while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } void apply(int p, F f) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = mapping(f, d[p]); for (int i = 1; i <= log; i++) update(p >> i); } void apply(int l, int r, F f) { assert(0 <= l && l <= r && r <= _n); if (l == r) return; l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } { int l2 = l, r2 = r; while (l < r) { if (l & 1) all_apply(l++, f); if (r & 1) all_apply(--r, f); l >>= 1; r >>= 1; } l = l2; r = r2; } for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } template <bool (*g)(S)> int max_right(int l) { return max_right(l, [](S x) { return g(x); }); } template <class G> int max_right(int l, G g) { assert(0 <= l && l <= _n); assert(g(e())); if (l == _n) return _n; l += size; for (int i = log; i >= 1; i--) push(l >> i); S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!g(op(sm, d[l]))) { while (l < size) { push(l); l = (2 * l); if (g(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template <bool (*g)(S)> int min_left(int r) { return min_left(r, [](S x) { return g(x); }); } template <class G> int min_left(int r, G g) { assert(0 <= r && r <= _n); assert(g(e())); if (r == 0) return 0; r += size; for (int i = log; i >= 1; i--) push((r - 1) >> i); S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!g(op(d[r], sm))) { while (r < size) { push(r); r = (2 * r + 1); if (g(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; std::vector<S> d; std::vector<F> lz; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } void all_apply(int k, F f) { d[k] = mapping(f, d[k]); if (k < size) lz[k] = composition(f, lz[k]); } void push(int k) { all_apply(2 * k, lz[k]); all_apply(2 * k + 1, lz[k]); lz[k] = id(); } }; using S = P; using F = P; F id(){ return {-1e18, -1e18}; } S e(){ return {0, 0}; } S op(S a, S b){ return {a.fi + b.fi, a.se + b.se}; } S mapping(F a, S b){ if(a==id())return b; return a; } F composition(F b, F a){ if(b==id())return a; else return b; } ll l, r; bool gl(S x){ return x.se<=l; } bool gr(S x){ return x.se<=r; } //usage lazy_segtree<S, op, e, F, mapping, composition, id> /************************************** ** A main function starts from here ** ***************************************/ int main(){ ll N, Q; cin >> N >> Q; vector<S> v(N); rep(i, N){ ll a; cin >> a; v[i] = {a, 1}; } lazy_segtree<S, op, e, F, mapping, composition, id> lz(v); while(Q--){ ll t; cin >> t >> l >> r; l--; /* ll ok = N, ng = -1; while(abs(ok-ng)>1){ ll m = (ok+ng)/2; auto p = lz.prod(0, m); if(p.se>=l){ ok = m; }else{ ng = m; } } l = ok; ok = N; ng = -1; while(abs(ok-ng)>1){ ll m = (ok+ng)/2; auto p = lz.prod(0, m); if(p.se>=r){ ok = m; }else{ ng = m; } } r = ok; */ l = lz.max_right<gl>(0); r = lz.max_right<gr>(0); //l--;//r++; //cerr << l <<" " << r<<endl; if(t==1){ auto p = lz.prod(l, r); lz.apply(l, l+1, {p.fi, 1}); lz.apply(l+1, r, {0, 0}); }else{ auto p = lz.prod(l, r); cout << p.fi << endl; } } return 0; }