結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | snrnsidy |
提出日時 | 2021-04-06 04:18:18 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,370 bytes |
コンパイル時間 | 2,082 ms |
コンパイル使用メモリ | 150,620 KB |
実行使用メモリ | 10,880 KB |
最終ジャッジ日時 | 2024-06-10 16:40:32 |
合計ジャッジ時間 | 9,145 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 6 ms
5,376 KB |
testcase_03 | AC | 3 ms
5,376 KB |
testcase_04 | AC | 5 ms
5,376 KB |
testcase_05 | AC | 5 ms
5,376 KB |
testcase_06 | AC | 5 ms
5,376 KB |
testcase_07 | AC | 5 ms
5,376 KB |
testcase_08 | AC | 3 ms
5,376 KB |
testcase_09 | AC | 4 ms
5,376 KB |
testcase_10 | AC | 4 ms
5,376 KB |
testcase_11 | AC | 4 ms
5,376 KB |
testcase_12 | AC | 4 ms
5,376 KB |
testcase_13 | AC | 4 ms
5,376 KB |
testcase_14 | AC | 3 ms
5,376 KB |
testcase_15 | AC | 5 ms
5,376 KB |
testcase_16 | AC | 5 ms
5,376 KB |
testcase_17 | AC | 4 ms
5,376 KB |
testcase_18 | AC | 5 ms
5,376 KB |
testcase_19 | AC | 6 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | WA | - |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | TLE | - |
testcase_24 | TLE | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
コンパイルメッセージ
main.cpp: In function 'std::vector<int> berlekamp_massey(std::vector<int>)': main.cpp:54:44: warning: 'ld' may be used uninitialized [-Wmaybe-uninitialized] 54 | lint k = -(x[i] - t) * ipow(ld, mod - 2) % mod; | ~~~~^~~~~~~~~~~~~ main.cpp:41:17: note: 'ld' was declared here 41 | int lf, ld; | ^~ main.cpp:55:33: warning: 'lf' may be used uninitialized [-Wmaybe-uninitialized] 55 | vector<int> c(i - lf - 1); | ~~^~~~ main.cpp:41:13: note: 'lf' was declared here 41 | int lf, ld; | ^~
ソースコード
#include <map> #include <set> #include <list> #include <cmath> #include <ctime> #include <deque> #include <queue> #include <stack> #include <bitset> #include <cstdio> #include <limits> #include <vector> #include <cstdlib> #include <numeric> #include <sstream> #include <iostream> #include <algorithm> #include <functional> #include <iomanip> #include <unordered_map> #include <memory.h> #include <unordered_set> #include <fstream> #include <random> using namespace std; const long long int mod = 1e9 + 7; using lint = long long; lint ipow(lint x, lint p) { lint ret = 1, piv = x; while (p) { if (p & 1) ret = ret * piv % mod; piv = piv * piv % mod; p >>= 1; } return ret; } vector<int> berlekamp_massey(vector<int> x) { vector<int> ls, cur; int lf, ld; for (int i = 0; i < x.size(); i++) { lint t = 0; for (int j = 0; j < cur.size(); j++) { t = (t + 1ll * x[i - j - 1] * cur[j]) % mod; } if ((t - x[i]) % mod == 0) continue; if (cur.empty()) { cur.resize(i + 1); lf = i; ld = (t - x[i]) % mod; continue; } lint k = -(x[i] - t) * ipow(ld, mod - 2) % mod; vector<int> c(i - lf - 1); c.push_back(k); for (auto& j : ls) c.push_back(-j * k % mod); if (c.size() < cur.size()) c.resize(cur.size()); for (int j = 0; j < cur.size(); j++) { c[j] = (c[j] + cur[j]) % mod; } if (i - lf + (int)ls.size() >= (int)cur.size()) { tie(ls, lf, ld) = make_tuple(cur, i, (t - x[i]) % mod); } cur = c; } for (auto& i : cur) i = (i % mod + mod) % mod; return cur; } int get_nth(vector<int> rec, vector<int> dp, lint n) { int m = rec.size(); vector<int> s(m), t(m); s[0] = 1; if (m != 1) t[1] = 1; else t[0] = rec[0]; auto mul = [&rec](vector<int> v, vector<int> w) { int m = v.size(); vector<int> t(2 * m); for (int j = 0; j < m; j++) { for (int k = 0; k < m; k++) { t[j + k] += 1ll * v[j] * w[k] % mod; if (t[j + k] >= mod) t[j + k] -= mod; } } for (int j = 2 * m - 1; j >= m; j--) { for (int k = 1; k <= m; k++) { t[j - k] += 1ll * t[j] * rec[k - 1] % mod; if (t[j - k] >= mod) t[j - k] -= mod; } } t.resize(m); return t; }; while (n) { if (n & 1) s = mul(s, t); t = mul(t, t); n >>= 1; } lint ret = 0; for (int i = 0; i < m; i++) ret += 1ll * s[i] * dp[i] % mod; return ret % mod; } int guess_nth_term(vector<int> x, lint n) { if (n < x.size()) return x[n]; vector<int> v = berlekamp_massey(x); if (v.empty()) return 0; return get_nth(v, x, n); } struct elem { int x, y, v; }; // A_(x, y) <- v, 0-based. no duplicate please.. vector<int> get_min_poly(int n, vector<elem> M) { // smallest poly P such that A^i = sum_{j < i} {A^j \times P_j} vector<int> rnd1, rnd2; mt19937 rng(0x14004); auto randint = [&rng](int lb, int ub) { return uniform_int_distribution<int>(lb, ub)(rng); }; for (int i = 0; i < n; i++) { rnd1.push_back(randint(1, mod - 1)); rnd2.push_back(randint(1, mod - 1)); } vector<int> gobs; for (int i = 0; i < 2 * n + 2; i++) { int tmp = 0; for (int j = 0; j < n; j++) { tmp += 1ll * rnd2[j] * rnd1[j] % mod; if (tmp >= mod) tmp -= mod; } gobs.push_back(tmp); vector<int> nxt(n); for (auto& i : M) { nxt[i.x] += 1ll * i.v * rnd1[i.y] % mod; if (nxt[i.x] >= mod) nxt[i.x] -= mod; } rnd1 = nxt; } auto sol = berlekamp_massey(gobs); reverse(sol.begin(), sol.end()); return sol; } lint det(int n, vector<elem> M) { vector<int> rnd; mt19937 rng(0x14004); auto randint = [&rng](int lb, int ub) { return uniform_int_distribution<int>(lb, ub)(rng); }; for (int i = 0; i < n; i++) rnd.push_back(randint(1, mod - 1)); for (auto& i : M) { i.v = 1ll * i.v * rnd[i.y] % mod; } auto sol = get_min_poly(n, M)[0]; if (n % 2 == 0) sol = mod - sol; for (auto& i : rnd) sol = 1ll * sol * ipow(i, mod - 2) % mod; return sol; } int main(void) { cin.tie(0); ios::sync_with_stdio(false); long long int n, k, t; vector <int> v,v2; v.push_back(0); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> t; v.push_back(t); } for (int i = n + 1; i <= 10000; i++) { long long int sum = 0; for (int j = 1; j <= n; j++) { sum += v[i - j]; sum %= mod; } v.push_back(sum); } long long int sum = 0; for (int i = 0; i <= 10000; i++) { sum += v[i]; sum %= mod; v2.push_back(sum); } cout << guess_nth_term(v, k) << ' ' << guess_nth_term(v2,k) << '\n'; return 0; }