結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | snrnsidy |
提出日時 | 2021-04-06 04:25:16 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 22 ms / 5,000 ms |
コード長 | 4,887 bytes |
コンパイル時間 | 1,980 ms |
コンパイル使用メモリ | 144,988 KB |
最終ジャッジ日時 | 2025-01-20 12:09:56 |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 37 |
コンパイルメッセージ
main.cpp: In function ‘std::vector<int> berlekamp_massey(std::vector<int>)’: main.cpp:55:33: warning: ‘lf’ may be used uninitialized [-Wmaybe-uninitialized] 55 | vector<int> c(i - lf - 1); | ~~^~~~ main.cpp:41:13: note: ‘lf’ was declared here 41 | int lf, ld; | ^~ main.cpp:54:44: warning: ‘ld’ may be used uninitialized [-Wmaybe-uninitialized] 54 | lint k = -(x[i] - t) * ipow(ld, mod - 2) % mod; | ~~~~^~~~~~~~~~~~~ main.cpp:41:17: note: ‘ld’ was declared here 41 | int lf, ld; | ^~
ソースコード
#include <map>#include <set>#include <list>#include <cmath>#include <ctime>#include <deque>#include <queue>#include <stack>#include <bitset>#include <cstdio>#include <limits>#include <vector>#include <cstdlib>#include <numeric>#include <sstream>#include <iostream>#include <algorithm>#include <functional>#include <iomanip>#include <unordered_map>#include <memory.h>#include <unordered_set>#include <fstream>#include <random>using namespace std;const long long int mod = 1e9 + 7;using lint = long long;lint ipow(lint x, lint p) {lint ret = 1, piv = x;while (p) {if (p & 1) ret = ret * piv % mod;piv = piv * piv % mod;p >>= 1;}return ret;}vector<int> berlekamp_massey(vector<int> x) {vector<int> ls, cur;int lf, ld;for (int i = 0; i < x.size(); i++) {lint t = 0;for (int j = 0; j < cur.size(); j++) {t = (t + 1ll * x[i - j - 1] * cur[j]) % mod;}if ((t - x[i]) % mod == 0) continue;if (cur.empty()) {cur.resize(i + 1);lf = i;ld = (t - x[i]) % mod;continue;}lint k = -(x[i] - t) * ipow(ld, mod - 2) % mod;vector<int> c(i - lf - 1);c.push_back(k);for (auto& j : ls) c.push_back(-j * k % mod);if (c.size() < cur.size()) c.resize(cur.size());for (int j = 0; j < cur.size(); j++) {c[j] = (c[j] + cur[j]) % mod;}if (i - lf + (int)ls.size() >= (int)cur.size()) {tie(ls, lf, ld) = make_tuple(cur, i, (t - x[i]) % mod);}cur = c;}for (auto& i : cur) i = (i % mod + mod) % mod;return cur;}int get_nth(vector<int> rec, vector<int> dp, lint n) {int m = rec.size();vector<int> s(m), t(m);s[0] = 1;if (m != 1) t[1] = 1;else t[0] = rec[0];auto mul = [&rec](vector<int> v, vector<int> w) {int m = v.size();vector<int> t(2 * m);for (int j = 0; j < m; j++) {for (int k = 0; k < m; k++) {t[j + k] += 1ll * v[j] * w[k] % mod;if (t[j + k] >= mod) t[j + k] -= mod;}}for (int j = 2 * m - 1; j >= m; j--) {for (int k = 1; k <= m; k++) {t[j - k] += 1ll * t[j] * rec[k - 1] % mod;if (t[j - k] >= mod) t[j - k] -= mod;}}t.resize(m);return t;};while (n) {if (n & 1) s = mul(s, t);t = mul(t, t);n >>= 1;}lint ret = 0;for (int i = 0; i < m; i++) ret += 1ll * s[i] * dp[i] % mod;return ret % mod;}int guess_nth_term(vector<int> x, lint n) {if (n < x.size()) return x[n];vector<int> v = berlekamp_massey(x);if (v.empty()) return 0;return get_nth(v, x, n);}struct elem { int x, y, v; }; // A_(x, y) <- v, 0-based. no duplicate please..vector<int> get_min_poly(int n, vector<elem> M) {// smallest poly P such that A^i = sum_{j < i} {A^j \times P_j}vector<int> rnd1, rnd2;mt19937 rng(0x14004);auto randint = [&rng](int lb, int ub) {return uniform_int_distribution<int>(lb, ub)(rng);};for (int i = 0; i < n; i++) {rnd1.push_back(randint(1, mod - 1));rnd2.push_back(randint(1, mod - 1));}vector<int> gobs;for (int i = 0; i < 2 * n + 2; i++) {int tmp = 0;for (int j = 0; j < n; j++) {tmp += 1ll * rnd2[j] * rnd1[j] % mod;if (tmp >= mod) tmp -= mod;}gobs.push_back(tmp);vector<int> nxt(n);for (auto& i : M) {nxt[i.x] += 1ll * i.v * rnd1[i.y] % mod;if (nxt[i.x] >= mod) nxt[i.x] -= mod;}rnd1 = nxt;}auto sol = berlekamp_massey(gobs);reverse(sol.begin(), sol.end());return sol;}lint det(int n, vector<elem> M) {vector<int> rnd;mt19937 rng(0x14004);auto randint = [&rng](int lb, int ub) {return uniform_int_distribution<int>(lb, ub)(rng);};for (int i = 0; i < n; i++) rnd.push_back(randint(1, mod - 1));for (auto& i : M) {i.v = 1ll * i.v * rnd[i.y] % mod;}auto sol = get_min_poly(n, M)[0];if (n % 2 == 0) sol = mod - sol;for (auto& i : rnd) sol = 1ll * sol * ipow(i, mod - 2) % mod;return sol;}long long int S[1000001];long long int F[1000001];int main(void){cin.tie(0);ios::sync_with_stdio(false);long long int n, k, t;vector <int> v,v2;v.push_back(0);cin >> n >> k;for (int i = 0; i < n; i++){cin >> t;v.push_back(t);}if (k <= 1e6){S[0] = 0;F[0] = 0;for (int i = 1; i <= n; i++){F[i] = v[i];S[i] = (S[i-1] + v[i]%mod);F[i] %= mod;S[i] %= mod;}for (int i = n + 1; i <= k; i++){long long int val = S[i - 1];val -= S[i - n - 1];val %= mod;if (val < 0){val += mod;}F[i] = val;S[i] = ((S[i - 1] % mod) + (val % mod) % mod);S[i] %= mod;}cout << F[k] << ' ' << S[k] << '\n';}else{for (int i = n + 1; i <= 300; i++){long long int sum = 0;for (int j = 1; j <= n; j++){sum += v[i - j];sum %= mod;}v.push_back(sum);}long long int sum = 0;for (int i = 0; i <= 300; i++){sum += v[i];sum %= mod;v2.push_back(sum);}cout << guess_nth_term(v, k) << ' ' << guess_nth_term(v2, k) << '\n';}return 0;}