結果

問題 No.1474 かさまJ
ユーザー kimiyukikimiyuki
提出日時 2021-04-09 23:04:20
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 182 ms / 2,500 ms
コード長 6,208 bytes
コンパイル時間 2,523 ms
コンパイル使用メモリ 212,236 KB
実行使用メモリ 7,040 KB
最終ジャッジ日時 2024-06-25 06:50:37
合計ジャッジ時間 4,222 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 79 ms
6,944 KB
testcase_06 AC 16 ms
6,940 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 113 ms
6,940 KB
testcase_10 AC 8 ms
6,940 KB
testcase_11 AC 4 ms
6,944 KB
testcase_12 AC 3 ms
6,940 KB
testcase_13 AC 112 ms
6,944 KB
testcase_14 AC 36 ms
6,940 KB
testcase_15 AC 17 ms
6,944 KB
testcase_16 AC 8 ms
6,944 KB
testcase_17 AC 42 ms
6,944 KB
testcase_18 AC 150 ms
6,944 KB
testcase_19 AC 175 ms
7,040 KB
testcase_20 AC 182 ms
7,040 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
#include <bits/stdc++.h>
#line 2 "/home/user/Library/utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 4 "/home/user/Library/modulus/modpow.hpp"

inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) {
    assert (/* 0 <= x and */ x < (uint_fast64_t)MOD);
    uint_fast64_t y = 1;
    for (; k; k >>= 1) {
        if (k & 1) (y *= x) %= MOD;
        (x *= x) %= MOD;
    }
    assert (/* 0 <= y and */ y < (uint_fast64_t)MOD);
    return y;
}
#line 5 "/home/user/Library/modulus/modinv.hpp"

inline int32_t modinv_nocheck(int32_t value, int32_t MOD) {
    assert (0 <= value and value < MOD);
    if (value == 0) return -1;
    int64_t a = value, b = MOD;
    int64_t x = 0, y = 1;
    for (int64_t u = 1, v = 0; a; ) {
        int64_t q = b / a;
        x -= q * u; std::swap(x, u);
        y -= q * v; std::swap(y, v);
        b -= q * a; std::swap(b, a);
    }
    if (not (value * x + MOD * y == b and b == 1)) return -1;
    if (x < 0) x += MOD;
    assert (0 <= x and x < MOD);
    return x;
}

inline int32_t modinv(int32_t x, int32_t MOD) {
    int32_t y = modinv_nocheck(x, MOD);
    assert (y != -1);
    return y;
}
#line 6 "/home/user/Library/modulus/mint.hpp"

/**
 * @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$
 */
template <int32_t MOD>
struct mint {
    int32_t value;
    mint() : value() {}
    mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {}
    mint(int32_t value_, std::nullptr_t) : value(value_) {}
    explicit operator bool() const { return value; }
    inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; }
    inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; }
    inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; }
    inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }
    inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value <    0) this->value += MOD; return *this; }
    inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; }
    inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); }
    inline bool operator == (mint<MOD> other) const { return value == other.value; }
    inline bool operator != (mint<MOD> other) const { return value != other.value; }
    inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); }
    inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); }
    inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); }
    inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); }
};
template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; }
template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; }
template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; }
template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; }
template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; }
template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; }
#line 4 "/home/user/Library/modulus/factorial.hpp"

template <int32_t MOD>
mint<MOD> fact(int n) {
    static std::vector<mint<MOD> > memo(1, 1);
    while (n >= memo.size()) {
        memo.push_back(memo.back() * mint<MOD>(memo.size()));
    }
    return memo[n];
}
template <int32_t MOD>
mint<MOD> inv_fact(int n) {
    static std::vector<mint<MOD> > memo;
    if (memo.size() <= n) {
        int l = memo.size();
        int r = n * 1.3 + 100;
        memo.resize(r);
        memo[r - 1] = fact<MOD>(r - 1).inv();
        for (int i = r - 2; i >= l; -- i) {
            memo[i] = memo[i + 1] * (i + 1);
        }
    }
    return memo[n];
}
#line 5 "/home/user/Library/modulus/choose.hpp"

/**
 * @brief combination / 組合せ ${} _ n C _ r$ (前処理 $O(n)$ + $O(1)$)
 */
template <int32_t MOD>
mint<MOD> choose(int n, int r) {
    assert (0 <= r and r <= n);
    return fact<MOD>(n) * inv_fact<MOD>(n - r) * inv_fact<MOD>(r);
}
#line 5 "main.cpp"
using namespace std;

constexpr int64_t MOD = 1000000007;
mint<MOD> solve(int n, int mp, int mq, int l, const vector<int>& s) {
    vector<vector<mint<MOD> > > dp(n + 1, vector<mint<MOD> >(mq + 1));
    dp[0][0] = 1;
    REP (i, n) {
        REP_R (j, n) {
            // REP (k, mq) {
            //     REP3 (delta, 1, s[i] + 1) {
            //         if (k + s[i] <= mq) {
            //             dp[j + 1][k + s[i]] += dp[j][k];
            //         }
            //     }
            // }

            vector<mint<MOD> > imos(mq + 2);
            REP (k, mq) {
                imos[k + 1] += dp[j][k];
                imos[k + min(s[i] + 1, mq - k + 1)] -= dp[j][k];
            }
            REP (k, mq + 1) {
                dp[j + 1][k] += imos[k];
                imos[k + 1] += imos[k];
            }
        }
    }
    mint<MOD> ans = 0;
    REP_R (j, n + 1) {
        REP (k, mq + 1) {
            int m = mp - (j * l - k);
            if (m >= 0) {
                ans += choose<MOD>(m + n - 1, n - 1) * dp[j][k];
            }
        }
    }
    return ans;
}

// generated by oj-template v4.7.2 (https://github.com/online-judge-tools/template-generator)
int main() {
    int n, mp, mq, l;
    cin >> n >> mp >> mq >> l;
    vector<int> s(n);
    REP (i, n) {
        cin >> s[i];
    }
    auto ans = solve(n, mp, mq, l, s);
    cout << ans << endl;
    return 0;
}
0