結果
| 問題 |
No.1510 Simple Integral
|
| コンテスト | |
| ユーザー |
遭難者
|
| 提出日時 | 2021-04-10 00:08:53 |
| 言語 | Java (openjdk 23) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 27,893 bytes |
| コンパイル時間 | 3,314 ms |
| コンパイル使用メモリ | 94,188 KB |
| 実行使用メモリ | 59,384 KB |
| 最終ジャッジ日時 | 2024-09-14 22:59:28 |
| 合計ジャッジ時間 | 11,719 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 1 WA * 20 RE * 22 |
ソースコード
import java.util.*;
import java.io.*;
public class Main {
public static void solve(ContestScanner sc, ContestPrinter ou) {
int n = sc.nextInt();
var q = new HashMap<Integer, Integer>();
for (int i = 0; i < n; i++) {
int d = sc.nextInt();
if (q.containsKey(d))
q.put(d, q.get(d) + 1);
else
q.put(d, 1);
}
Binom binom = new Binom(n * 2 + 2, mod);
n = q.size();
var a = new Point[n];
var $ = new int[] { 0 };
q.forEach((i, j) -> {
a[$[0]] = new Point(i, j);
$[0]++;
});
long s = 0L;
for (int i = 0; i < n; i++) {
long[] h = { 1L };
for (int j = 0; j < n; j++) {
if (i != j) {
long t = a[j].x * a[j].x - a[i].x * a[i].x;
t %= mod;
if (t < 0)
t += mod;
long[] kk = new long[a[j].y + 1];
long tt = 1;
for (int k = kk.length - 1; k >= 0; k--) {
kk[k] = binom.comb(a[j].y, k) * tt;
kk[k] %= mod;
tt *= t;
tt %= mod;
}
h = Convolution.convolution(h, kk, mod);
if (h.length > a[i].y)
Arrays.copyOf(h, a[i].y);
}
}
long inv = inv(h[0]);
for (int j = 1; j < h.length; j++) {
h[j - 1] = -h[j] * inv;
h[j - 1] %= mod;
if (h[j - 1] < 0)
h[j - 1] += mod;
}
long[] hh = { 1L };
var ans = new long[a[i].y];
for (int k = 0; k < a[i].y; k++) {
for (int l = 0; l < hh.length; l++) {
ans[l] += hh[l];
ans[l] %= mod;
}
hh = Convolution.convolution(h, hh, mod);
if (ans.length < hh.length)
Arrays.copyOf(hh, ans.length);
}
long ss = 0L;
long sss = 1L;
for (int j = 0; j < ans.length; j++) {
sss = binom.fact(2 * j) * binom.fact(2 * a[i].y - 2 * j - 2);
sss %= mod;
sss *= binom.fin(j);
sss %= mod;
sss *= binom.fin(a[i].y - j - 1);
sss %= mod;
ss += sss;
ss %= mod;
}
ss *= binom.fin(a[i].y - 1);
ss %= mod;
ss *= inv;
ss %= mod;
ss *= inv(mp(2 * a[i].x, 2 * a[i].y - 1));
ss %= mod;
s += ss;
}
s *= 2;
s %= mod;
if (s < 0)
s += mod;
ou.println(s);
}
public static int mod = 998244353;
public static long inv(long a) {
return mp(a, mod - 2);
}
public static long mp(long a, long b) {
if (b == 0)
return 1;
if ((b & 1) == 1)
return (a * mp(a, b - 1)) % mod;
return mp((a * a) % mod, b >> 1);
}
public static void main(String[] args) {
var sc = new ContestScanner();
var ou = new ContestPrinter();
solve(sc, ou);
ou.flush();
ou.close();
}
public static int intArray(int[] a, java.util.function.IntBinaryOperator map) {
int s = a[0];
for (int i = 1; i < a.length; i++)
s = map.applyAsInt(s, a[i]);
return s;
}
public static long longArray(long[] a, java.util.function.LongBinaryOperator map) {
long s = a[0];
for (int i = 1; i < a.length; i++)
s = map.applyAsLong(s, a[i]);
return s;
}
public static int max(int s, int... a) {
for (int i : a)
if (s < i)
s = i;
return s;
}
public static long max(long s, long... a) {
for (long i : a)
if (s < i)
s = i;
return s;
}
public static int min(int s, int... a) {
for (int i : a)
if (s > i)
s = i;
return s;
}
public static long min(long s, long... a) {
for (long i : a)
if (s > i)
s = i;
return s;
}
static class Point {
int x;
int y;
Point(int x, int y) {
this.x = x;
this.y = y;
}
int compareTo(Point p) {
long c = this.x - p.x;
if (c < 0)
return -1;
if (c > 0)
return 1;
return 0;
}
boolean equals(Point p) {
return this.x == p.x && this.y == p.y;
}
}
static class Point2 {
long x;
int y;
Point2(long x, int y) {
this.x = x;
this.y = y;
}
int compareTo(Point2 p) {
long c = this.x - p.x;
if (c < 0)
return -1;
if (c > 0)
return 1;
return 0;
}
boolean equals(Point2 p) {
return this.x == p.x && this.y == p.y;
}
}
}
class Binom {
private int mod;
private long[] fac;
private long[] fin;
private long[] inv;
Binom(int max, int mod) {
this.mod = mod;
fac = new long[max];
fin = new long[max];
inv = new long[max];
fac[0] = fac[1] = fin[0] = fin[1] = inv[1] = 1;
for (int i = 2; i < max; i++) {
fac[i] = fac[i - 1] * i % mod;
inv[i] = mod - inv[mod % i] * (mod / i) % mod;
fin[i] = fin[i - 1] * inv[i] % mod;
}
}
public long comb(int n, int k) {
if (n < k || n < 0 || k < 0)
return 0;
return fac[n] * (fin[k] * fin[n - k] % mod) % mod;
}
public long fact(int n) {
return fac[n];
// n! を返します
}
public long inv(int n) {
return inv[n];
// n の逆元を返します
}
public long fin(int n) {
return fin[n];
// n! の逆元を返します
}
}
/**
* Convolution.
*
* @verified https://atcoder.jp/contests/practice2/tasks/practice2_f
* @verified https://judge.yosupo.jp/problem/convolution_mod_1000000007
*/
class Convolution {
/**
* Find a primitive root.
*
* @param m A prime number.
* @return Primitive root.
*/
private static int primitiveRoot(int m) {
if (m == 2)
return 1;
if (m == 167772161)
return 3;
if (m == 469762049)
return 3;
if (m == 754974721)
return 11;
if (m == 998244353)
return 3;
int[] divs = new int[20];
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0)
x /= 2;
for (int i = 3; (long) (i) * i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
boolean ok = true;
for (int i = 0; i < cnt; i++) {
if (pow(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok)
return g;
}
}
/**
* Power.
*
* @param x Parameter x.
* @param n Parameter n.
* @param m Mod.
* @return n-th power of x mod m.
*/
private static long pow(long x, long n, int m) {
if (m == 1)
return 0;
long r = 1;
long y = x % m;
while (n > 0) {
if ((n & 1) != 0)
r = (r * y) % m;
y = (y * y) % m;
n >>= 1;
}
return r;
}
/**
* Ceil of power 2.
*
* @param n Value.
* @return Ceil of power 2.
*/
private static int ceilPow2(int n) {
int x = 0;
while ((1L << x) < n)
x++;
return x;
}
/**
* Garner's algorithm.
*
* @param c Mod convolution results.
* @param mods Mods.
* @return Result.
*/
private static long garner(long[] c, int[] mods) {
int n = c.length + 1;
long[] cnst = new long[n];
long[] coef = new long[n];
java.util.Arrays.fill(coef, 1);
for (int i = 0; i < n - 1; i++) {
int m1 = mods[i];
long v = (c[i] - cnst[i] + m1) % m1;
v = v * pow(coef[i], m1 - 2, m1) % m1;
for (int j = i + 1; j < n; j++) {
long m2 = mods[j];
cnst[j] = (cnst[j] + coef[j] * v) % m2;
coef[j] = (coef[j] * m1) % m2;
}
}
return cnst[n - 1];
}
/**
* Pre-calculation for NTT.
*
* @param mod NTT Prime.
* @param g Primitive root of mod.
* @return Pre-calculation table.
*/
private static long[] sumE(int mod, int g) {
long[] sum_e = new long[30];
long[] es = new long[30];
long[] ies = new long[30];
int cnt2 = Integer.numberOfTrailingZeros(mod - 1);
long e = pow(g, (mod - 1) >> cnt2, mod);
long ie = pow(e, mod - 2, mod);
for (int i = cnt2; i >= 2; i--) {
es[i - 2] = e;
ies[i - 2] = ie;
e = e * e % mod;
ie = ie * ie % mod;
}
long now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_e[i] = es[i] * now % mod;
now = now * ies[i] % mod;
}
return sum_e;
}
/**
* Pre-calculation for inverse NTT.
*
* @param mod Mod.
* @param g Primitive root of mod.
* @return Pre-calculation table.
*/
private static long[] sumIE(int mod, int g) {
long[] sum_ie = new long[30];
long[] es = new long[30];
long[] ies = new long[30];
int cnt2 = Integer.numberOfTrailingZeros(mod - 1);
long e = pow(g, (mod - 1) >> cnt2, mod);
long ie = pow(e, mod - 2, mod);
for (int i = cnt2; i >= 2; i--) {
es[i - 2] = e;
ies[i - 2] = ie;
e = e * e % mod;
ie = ie * ie % mod;
}
long now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_ie[i] = ies[i] * now % mod;
now = now * es[i] % mod;
}
return sum_ie;
}
/**
* Inverse NTT.
*
* @param a Target array.
* @param sumIE Pre-calculation table.
* @param mod NTT Prime.
*/
private static void butterflyInv(long[] a, long[] sumIE, int mod) {
int n = a.length;
int h = ceilPow2(n);
for (int ph = h; ph >= 1; ph--) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
long inow = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
long l = a[i + offset];
long r = a[i + offset + p];
a[i + offset] = (l + r) % mod;
a[i + offset + p] = (mod + l - r) * inow % mod;
}
int x = Integer.numberOfTrailingZeros(~s);
inow = inow * sumIE[x] % mod;
}
}
}
/**
* Inverse NTT.
*
* @param a Target array.
* @param sumE Pre-calculation table.
* @param mod NTT Prime.
*/
private static void butterfly(long[] a, long[] sumE, int mod) {
int n = a.length;
int h = ceilPow2(n);
for (int ph = 1; ph <= h; ph++) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
long now = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
long l = a[i + offset];
long r = a[i + offset + p] * now % mod;
a[i + offset] = (l + r) % mod;
a[i + offset + p] = (l - r + mod) % mod;
}
int x = Integer.numberOfTrailingZeros(~s);
now = now * sumE[x] % mod;
}
}
}
/**
* Convolution.
*
* @param a Target array 1.
* @param b Target array 2.
* @param mod NTT Prime.
* @return Answer.
*/
public static long[] convolution(long[] a, long[] b, int mod) {
int n = a.length;
int m = b.length;
if (n == 0 || m == 0)
return new long[0];
int z = 1 << ceilPow2(n + m - 1);
{
long[] na = new long[z];
long[] nb = new long[z];
System.arraycopy(a, 0, na, 0, n);
System.arraycopy(b, 0, nb, 0, m);
a = na;
b = nb;
}
int g = primitiveRoot(mod);
long[] sume = sumE(mod, g);
long[] sumie = sumIE(mod, g);
butterfly(a, sume, mod);
butterfly(b, sume, mod);
for (int i = 0; i < z; i++) {
a[i] = a[i] * b[i] % mod;
}
butterflyInv(a, sumie, mod);
a = Arrays.copyOf(a, n + m - 1);
long iz = pow(z, mod - 2, mod);
for (int i = 0; i < n + m - 1; i++)
a[i] = a[i] * iz % mod;
return a;
}
/**
* Convolution.
*
* @param a Target array 1.
* @param b Target array 2.
* @param mod Any mod.
* @return Answer.
*/
public static long[] convolutionLL(long[] a, long[] b, int mod) {
int n = a.length;
int m = b.length;
if (n == 0 || m == 0)
return new long[0];
int mod1 = 754974721;
int mod2 = 167772161;
int mod3 = 469762049;
long[] c1 = convolution(a, b, mod1);
long[] c2 = convolution(a, b, mod2);
long[] c3 = convolution(a, b, mod3);
int retSize = c1.length;
long[] ret = new long[retSize];
int[] mods = { mod1, mod2, mod3, mod };
for (int i = 0; i < retSize; ++i) {
ret[i] = garner(new long[] { c1[i], c2[i], c3[i] }, mods);
}
return ret;
}
/**
* Naive convolution. (Complexity is O(N^2)!!)
*
* @param a Target array 1.
* @param b Target array 2.
* @param mod Mod.
* @return Answer.
*/
public static long[] convolutionNaive(long[] a, long[] b, int mod) {
int n = a.length;
int m = b.length;
int k = n + m - 1;
long[] ret = new long[k];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ret[i + j] += a[i] * b[j] % mod;
ret[i + j] %= mod;
}
}
return ret;
}
}
class ContestScanner {
private final InputStream in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
public ContestScanner(InputStream in) {
this.in = in;
}
public ContestScanner() {
this(System.in);
}
private boolean hasNextByte() {
if (ptr < buflen)
return true;
ptr = 0;
try {
buflen = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (buflen <= 0)
return false;
return true;
}
private int readByte() {
return hasNextByte() ? buffer[ptr++] : -1;
}
private static boolean isPrintableChar(int c) {
return 33 <= c && c <= 126;
}
public boolean hasNext() {
while (hasNextByte() && !isPrintableChar(buffer[ptr]))
ptr++;
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public void nextThrow(int n) {
for (int i = 0; i < n; i++)
this.next();
}
public void nextThrow() {
this.nextThrow(1);
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b)
throw new NumberFormatException();
while (true) {
if ('0' <= b && b <= '9') {
n *= 10;
n += b - '0';
} else if (b == -1 || !isPrintableChar(b))
return minus ? -n : n;
else
throw new NumberFormatException();
b = readByte();
}
}
public int nextInt() {
long nl = nextLong();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE)
throw new NumberFormatException();
return (int) nl;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public boolean[] nextBoolean(char True) {
String s = this.next();
int n = s.length();
boolean[] array = new boolean[n];
for (int i = 0; i < n; i++)
array[i] = s.charAt(i) == True;
return array;
}
public long[] nextLongArray(int length) {
long[] array = new long[length];
for (int i = 0; i < length; i++)
array[i] = this.nextLong();
return array;
}
public long[] nextLongArray(int length, java.util.function.LongUnaryOperator map) {
long[] array = new long[length];
for (int i = 0; i < length; i++)
array[i] = map.applyAsLong(this.nextLong());
return array;
}
public int[] nextIntArray(int length) {
int[] array = new int[length];
for (int i = 0; i < length; i++)
array[i] = this.nextInt();
return array;
}
public int[] nextIntArray(int length, java.util.function.IntUnaryOperator map) {
int[] array = new int[length];
for (int i = 0; i < length; i++)
array[i] = map.applyAsInt(this.nextInt());
return array;
}
public int[] nextIntArray(int length, int[] array) {
int n = length + array.length;
int[] a = new int[n];
for (int i = 0; i < length; i++)
a[i] = this.nextInt();
for (int i = length; i < n; i++)
a[i] = array[i - length];
return a;
}
public Integer[] nextIntegerArray(int length, java.util.function.IntUnaryOperator map) {
Integer[] array = new Integer[length];
for (int i = 0; i < length; i++)
array[i] = map.applyAsInt(this.nextInt());
return array;
}
public Integer[] nextIntegerArray(int length) {
Integer[] array = new Integer[length];
for (int i = 0; i < length; i++)
array[i] = this.nextInt();
return array;
}
public double[] nextDoubleArray(int length) {
double[] array = new double[length];
for (int i = 0; i < length; i++)
array[i] = this.nextDouble();
return array;
}
public double[] nextDoubleArray(int length, java.util.function.DoubleUnaryOperator map) {
double[] array = new double[length];
for (int i = 0; i < length; i++)
array[i] = map.applyAsDouble(this.nextDouble());
return array;
}
public String[] nextArray(int length) {
String[] array = new String[length];
for (int i = 0; i < length; i++)
array[i] = this.next();
return array;
}
public long[][] nextLongMatrix(int height, int width) {
long[][] mat = new long[height][width];
for (int h = 0; h < height; h++)
for (int w = 0; w < width; w++)
mat[h][w] = this.nextLong();
return mat;
}
public int[][] nextIntMatrix(int height, int width) {
int[][] mat = new int[height][width];
for (int h = 0; h < height; h++)
for (int w = 0; w < width; w++)
mat[h][w] = this.nextInt();
return mat;
}
public double[][] nextDoubleMatrix(int height, int width) {
double[][] mat = new double[height][width];
for (int h = 0; h < height; h++)
for (int w = 0; w < width; w++)
mat[h][w] = this.nextDouble();
return mat;
}
public boolean[][] nextBooleanMatrix(int height, int width, char True) {
boolean[][] mat = new boolean[height][width];
for (int h = 0; h < height; h++) {
String s = this.next();
for (int w = 0; w < width; w++)
mat[h][w] = s.charAt(w) == True;
}
return mat;
}
public char[][] nextCharMatrix(int height, int width) {
char[][] mat = new char[height][width];
for (int h = 0; h < height; h++) {
String s = this.next();
for (int w = 0; w < width; w++)
mat[h][w] = s.charAt(w);
}
return mat;
}
public char[][] nextCharMatrix(int height, int width, int h, int w, char c) {
char[][] mat = new char[height + 2 * h][width + 2 * w];
for (int i = 0; i < height; i++) {
String s = this.next();
for (int j = 0; j < width; j++)
mat[i + h][j + w] = s.charAt(j);
}
for (int i = 0; i < h; i++)
for (int j = 0; j < 2 * w + width; j++)
mat[i][j] = c;
for (int i = h + height; i < 2 * h + height; i++)
for (int j = 0; j < 2 * w + width; j++)
mat[i][j] = c;
for (int i = h; i < h + height; i++) {
for (int j = 0; j < w; j++)
mat[i][j] = c;
for (int j = w + width; j < 2 * w + width; j++)
mat[i][j] = c;
}
return mat;
}
public boolean[][] nextBooleanMatrix(int height, int width, int h, int w, char c) {
boolean[][] mat = new boolean[height + 2 * h][width + 2 * w];
for (int i = 0; i < height; i++) {
String s = this.next();
for (int j = 0; j < width; j++)
mat[i + h][j + w] = s.charAt(j) == c;
}
return mat;
}
}
class ContestPrinter extends PrintWriter {
public ContestPrinter(PrintStream stream) {
super(stream);
}
public ContestPrinter() {
super(System.out);
}
private static String dtos(double x, int n) {
StringBuilder sb = new StringBuilder();
if (x < 0) {
sb.append('-');
x = -x;
}
x += Math.pow(10, -n) / 2;
sb.append((long) x);
sb.append(".");
x -= (long) x;
for (int i = 0; i < n; i++) {
x *= 10;
sb.append((int) x);
x -= (int) x;
}
return sb.toString();
}
@Override
public void print(float f) {
super.print(dtos(f, 20));
}
@Override
public void println(float f) {
super.println(dtos(f, 20));
}
@Override
public void print(double d) {
super.print(dtos(d, 20));
}
@Override
public void println(double d) {
super.println(dtos(d, 20));
}
public void printlnArray(String[] array) {
for (String i : array)
super.println(i);
}
public void printArray(int[] array, String separator) {
int n = array.length - 1;
for (int i = 0; i < n; i++) {
super.print(array[i]);
super.print(separator);
}
super.println(array[n]);
}
public void printArray(int[] array) {
this.printArray(array, " ");
}
public void printArray(Integer[] array) {
this.printArray(array, " ");
}
public void printArray(Integer[] array, String separator) {
int n = array.length - 1;
for (int i = 0; i < n; i++) {
super.print(array[i]);
super.print(separator);
}
super.println(array[n]);
}
public void printlnArray(int[] array) {
for (int i : array)
super.println(i);
}
public void printArray(int[] array, String separator, java.util.function.IntUnaryOperator map) {
int n = array.length - 1;
for (int i = 0; i < n; i++) {
super.print(map.applyAsInt(array[i]));
super.print(separator);
}
super.println(map.applyAsInt(array[n]));
}
public void printlnArray(int[] array, java.util.function.IntUnaryOperator map) {
for (int i : array)
super.println(map.applyAsInt(i));
}
public void printlnArray(long[] array, java.util.function.LongUnaryOperator map) {
for (long i : array)
super.println(map.applyAsLong(i));
}
public void printArray(int[] array, java.util.function.IntUnaryOperator map) {
this.printArray(array, " ", map);
}
public void printArray(long[] array, String separator) {
int n = array.length - 1;
for (int i = 0; i < n; i++) {
super.print(array[i]);
super.print(separator);
}
super.println(array[n]);
}
public void printArray(long[] array) {
this.printArray(array, " ");
}
public void printlnArray(long[] array) {
for (long i : array)
super.println(i);
}
public void printArray(boolean[] array, String a, String b) {
int n = array.length - 1;
for (int i = 0; i < n; i++)
super.print((array[i] ? a : b) + " ");
super.println(array[n] ? a : b);
}
public void printArray(boolean[] array) {
this.printArray(array, "Y", "N");
}
public void printArray(long[] array, String separator, java.util.function.LongUnaryOperator map) {
int n = array.length - 1;
for (int i = 0; i < n; i++) {
super.print(map.applyAsLong(array[i]));
super.print(separator);
}
super.println(map.applyAsLong(array[n]));
}
public void printArray(long[] array, java.util.function.LongUnaryOperator map) {
this.printArray(array, " ", map);
}
public void printArray(ArrayList<?> array) {
this.printArray(array, " ");
}
public void printArray(ArrayList<?> array, String separator) {
int n = array.size() - 1;
for (int i = 0; i < n; i++) {
super.print(array.get(i).toString());
super.print(separator);
}
super.println(array.get(n).toString());
}
public void printlnArray(ArrayList<?> array) {
int n = array.size();
for (int i = 0; i < n; i++)
super.println(array.get(i).toString());
}
public void printArray(int[][] array) {
int n = array.length;
if (n == 0)
return;
int m = array[0].length - 1;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++)
super.print(array[i][j] + " ");
super.println(array[i][m]);
}
}
public void printArray(long[][] array) {
int n = array.length;
if (n == 0)
return;
int m = array[0].length - 1;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++)
super.print(array[i][j] + " ");
super.println(array[i][m]);
}
}
}
遭難者