結果
問題 | No.1574 Swap and Repaint |
ユーザー | PCTprobability |
提出日時 | 2021-04-14 00:08:37 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2,296 ms / 10,000 ms |
コード長 | 12,814 bytes |
コンパイル時間 | 5,254 ms |
コンパイル使用メモリ | 304,540 KB |
実行使用メモリ | 38,168 KB |
最終ジャッジ日時 | 2024-10-03 12:11:25 |
合計ジャッジ時間 | 32,640 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,248 KB |
testcase_02 | AC | 3 ms
5,248 KB |
testcase_03 | AC | 3 ms
5,248 KB |
testcase_04 | AC | 3 ms
5,248 KB |
testcase_05 | AC | 3 ms
5,248 KB |
testcase_06 | AC | 3 ms
5,248 KB |
testcase_07 | AC | 3 ms
5,248 KB |
testcase_08 | AC | 3 ms
5,248 KB |
testcase_09 | AC | 12 ms
5,248 KB |
testcase_10 | AC | 7 ms
5,248 KB |
testcase_11 | AC | 7 ms
5,248 KB |
testcase_12 | AC | 9 ms
5,248 KB |
testcase_13 | AC | 8 ms
5,248 KB |
testcase_14 | AC | 8 ms
5,248 KB |
testcase_15 | AC | 11 ms
5,248 KB |
testcase_16 | AC | 4 ms
5,248 KB |
testcase_17 | AC | 6 ms
5,248 KB |
testcase_18 | AC | 482 ms
15,040 KB |
testcase_19 | AC | 2,137 ms
36,680 KB |
testcase_20 | AC | 629 ms
16,008 KB |
testcase_21 | AC | 418 ms
14,036 KB |
testcase_22 | AC | 356 ms
13,024 KB |
testcase_23 | AC | 92 ms
6,908 KB |
testcase_24 | AC | 1,760 ms
32,060 KB |
testcase_25 | AC | 909 ms
21,380 KB |
testcase_26 | AC | 35 ms
5,248 KB |
testcase_27 | AC | 290 ms
11,320 KB |
testcase_28 | AC | 2,240 ms
38,040 KB |
testcase_29 | AC | 2,207 ms
38,044 KB |
testcase_30 | AC | 2,296 ms
38,164 KB |
testcase_31 | AC | 2,248 ms
38,164 KB |
testcase_32 | AC | 2,227 ms
38,168 KB |
testcase_33 | AC | 2,223 ms
37,924 KB |
testcase_34 | AC | 2,200 ms
38,040 KB |
testcase_35 | AC | 2,203 ms
38,040 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #endif using ll = long long; using ld = long double; using ull = long long; #define all(s) (s).begin(),(s).end() #define rep2(i, m, n) for (int i = (m); i < (n); ++i) #define rep(i, n) rep2(i, 0, n) #define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i) #define drep(i, n) drep2(i, n, 0) #define rever(vec) reverse(vec.begin(), vec.end()) #define sor(vec) sort(vec.begin(), vec.end()) #define fi first #define se second #define P pair<ll,ll> #define REP(i, n) for (int i = 0; i < (n); ++i) const ll mod = 998244353; //const ll mod = 1000000007; const ll inf = 2000000000000000000ll; static const long double pi = 3.141592653589793; template<class T>void vcin(vector<T> &n){for(int i=0;i<int(n.size());i++) cin>>n[i];} template<class T>void vcout(vector<T> &n){for(int i=0;i<int(n.size());i++){cout<<n[i]<<" ";}cout<<endl;} void YesNo(bool a){if(a){cout<<"Yes"<<endl;}else{cout<<"No"<<endl;}} void YESNO(bool a){if(a){cout<<"YES"<<endl;}else{cout<<"NO"<<endl;}} template<class T,class U> void chmax(T& t,const U& u){if(t<u) t=u;} template<class T,class U> void chmin(T& t,const U& u){if(t>u) t=u;} template<class T> void ifmin(T t,T u){if(t>u){cout<<-1<<endl;}else{cout<<t<<endl;}} template<class T> void ifmax(T t,T u){if(t>u){cout<<-1<<endl;}else{cout<<t<<endl;}} template<typename T,typename ...Args>auto make_vector(T x,int arg,Args ...args){if constexpr(sizeof...(args)==0)return vector<T>(arg,x);else return vector(arg,make_vector<T>(x,args...));} ll modPow(ll a, ll n, ll mod) { ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; } void gbjsmzmfuuvdf(){ ios::sync_with_stdio(false); std::cin.tie(nullptr); cout<< fixed << setprecision(20); } using mint = modint998244353; struct S{ mint value; int size; }; using F = mint; S op(S a, S b){ return {a.value+b.value, a.size+b.size}; } S e(){ return {mint(0),1}; } S mapping(F f, S x){ return {x.value+x.size*f, x.size}; } F composition(F f, F g){ return f+g; } F id(){ return mint(0); } mint k[200100]; void com(){ k[0]=1; for(int i=1;i<200100;i++){ k[i]=k[i-1]*i; } } enum Mode { FAST = 1, NAIVE = -1, }; template <class T, Mode mode = FAST> struct FormalPowerSeries : std::vector<T> { using std::vector<T>::vector; using std::vector<T>::size; using std::vector<T>::resize; using F = FormalPowerSeries; F &operator+=(const F &g){ for(int i=0;i<int(min((*this).size(),g.size()));i++){ (*this)[i]+=g[i]; } return *this; } F &operator+=(const T &t){ assert(int((*this).size())); (*this)[0]+=t; return *this; } F &operator-=(const F &g) { for(int i=0;i<int(min((*this).size(),g.size()));i++){ (*this)[i]-=g[i]; } return *this; } F &operator-=(const T &t){ assert(int((*this).size())); (*this)[0]-=t; return *this; } F &operator*=(const T &g) { for(int i=0;i<int((*this).size());i++){ (*this)[i]*=g; } return *this; } F &operator/=(const T &g) { T div=g.inv(); for(int i=0;i<int((*this).size());i++){ (*this)[i]*=div; } return *this; } F &operator<<=(const int d) { int n=(*this).size(); (*this).insert((*this).begin(),d,0); (*this).resize(n); return *this; } F &operator>>=(const int d) { int n=(*this).size(); (*this).erase((*this).begin(),(*this).begin()+min(n, d)); (*this).resize(n); return *this; } F &operator=(const std::vector<T> &v) { int n = (*this).size(); for(int i = 0; i < n; ++i) (*this)[i] = v[i]; return *this; } F operator-() const { F ret = *this; return ret * -1; } F &operator*=(const F &g) { if(mode==FAST) { int n=(*this).size(); auto tmp=atcoder::convolution(*this,g); for(int i=0;i<n;++i){ (*this)[i]=tmp[i]; } return *this; } else{ int n = (*this).size(), m = g.size(); for(int i = n - 1; i >= 0; --i) { (*this)[i] *= g[0]; for(int j = 1; j < std::min(i + 1, m); j++) (*this)[i] += (*this)[i - j] * g[j]; } return *this; } } F &operator/=(const F &g) { if(mode == FAST){ int n = (*this).size(); (*this) = atcoder::convolution(*this, g.inv()); return *this; } else{ assert(g[0] != T(0)); T ig0 = g[0].inv(); int n = (*this).size(), m = g.size(); for(int i = 0; i < n; ++i) { for(int j = 1; j < std::min(i + 1, m); ++j) (*this)[i] -= (*this)[i - j] * g[j]; (*this)[i] *= ig0; } return *this; } } F &operator%=(const F &g) { return *this-=*this/g*g; } F operator*(const T &g) const { return F(*this)*=g;} F operator-(const T &g) const { return F(*this)-=g;} F operator*(const F &g) const { return F(*this)*=g;} F operator-(const F &g) const { return F(*this)-=g;} F operator+(const F &g) const { return F(*this)+=g;} F operator/(const F &g) const { return F(*this)/=g;} F operator%(const F &g) const { return F(*this)%=g;} F operator<<(const int d) const { return F(*this)<<=d;} F operator>>(const int d) const { return F(*this)>>=d;} void onemul(const int d,const T c){ int n=(*this).size(); for(int i=n-d-1;i>=0;i--){ (*this)[i+d]+=(*this)[i]*c; } } void onediv(const int d,const T c){ int n=(*this).size(); for(int i=0;i<n-d;i++){ (*this)[i+d]-=(*this)[i]*c; } } T eval(const T &t) const { int n = (*this).size(); T res = 0, tmp = 1; for(int i = 0; i < n; ++i){ res += (*this)[i] * tmp, tmp *= t; } return res; } F inv(int deg = -1) const { int n = (*this).size(); assert(mode == FAST and n and (*this)[0] != 0); if(deg == -1) deg = n; assert(deg > 0); F res{(*this)[0].inv()}; while(int(res.size()) < deg) { int m = res.size(); F f((*this).begin(), (*this).begin() + std::min(n, m * 2)), r(res); f.resize(m * 2), atcoder::internal::butterfly(f); r.resize(m * 2), atcoder::internal::butterfly(r); for(int i = 0; i < m * 2; ++i) f[i] *= r[i]; atcoder::internal::butterfly_inv(f); f.erase(f.begin(), f.begin() + m); f.resize(m * 2), atcoder::internal::butterfly(f); for(int i = 0; i < m * 2; ++i) f[i] *= r[i]; atcoder::internal::butterfly_inv(f); T iz = T(m * 2).inv(); iz *= -iz; for(int i = 0; i < m; ++i) f[i] *= iz; res.insert(res.end(), f.begin(), f.begin() + m); } res.resize(deg); return res; } F &diff_inplace() { int n = (*this).size(); for(int i = 1; i < n; ++i) (*this)[i - 1] = (*this)[i] * i; (*this)[n - 1] = 0; return *this; } F diff() const { F(*this).diff_inplace();} F &integral_inplace() { int n = (*this).size(), mod = T::mod(); std::vector<T> inv(n); { inv[1] = 1; for(int i = 2; i < n; ++i) inv[i] = T(mod) - inv[mod % i] * (mod / i); } for(int i = n - 2; i >= 0; --i) (*this)[i + 1] = (*this)[i] * inv[i + 1]; (*this)[0] = 0; return *this; } F integral() const { return F(*this).integral_inplace(); } F &log_inplace() { int n = (*this).size(); assert(n and (*this)[0] == 1); F f_inv = (*this).inv(); (*this).diff_inplace(); (*this) *= f_inv; (*this).integral_inplace(); return *this; } F log() const { return F(*this).log_inplace(); } F &deriv_inplace() { int n = (*this).size(); assert(n); for(int i = 2; i < n; ++i) (*this)[i] *= i; (*this).erase((*this).begin()); (*this).push_back(0); return *this; } F deriv() const { return F(*this).deriv_inplace(); } F &exp_inplace() { int n = (*this).size(); assert(n and (*this)[0] == 0); F g{1}; (*this)[0] = 1; F h_drv((*this).deriv()); for(int m = 1; m < n; m *= 2) { F f((*this).begin(), (*this).begin() + m); f.resize(2 * m), atcoder::internal::butterfly(f); auto mult_f = [&](F &p) { p.resize(2 * m); atcoder::internal::butterfly(p); for(int i = 0; i < 2 * m; ++i) p[i] *= f[i]; atcoder::internal::butterfly_inv(p); p /= 2 * m; }; if(m > 1) { F g_(g); g_.resize(2 * m), atcoder::internal::butterfly(g_); for(int i = 0; i < 2 * m; ++i) g_[i] *= g_[i] * f[i]; atcoder::internal::butterfly_inv(g_); T iz = T(-2 * m).inv(); g_ *= iz; g.insert(g.end(), g_.begin() + m / 2, g_.begin() + m); } F t((*this).begin(), (*this).begin() + m); t.deriv_inplace(); { F r{h_drv.begin(), h_drv.begin() + m - 1}; mult_f(r); for(int i = 0; i < m; ++i) t[i] -= r[i] + r[m + i]; } t.insert(t.begin(), t.back()); t.pop_back(); t *= g; F v((*this).begin() + m, (*this).begin() + std::min(n, 2 * m)); v.resize(m); t.insert(t.begin(), m - 1, 0); t.push_back(0); t.integral_inplace(); for(int i = 0; i < m; ++i) v[i] -= t[m + i]; mult_f(v); for(int i = 0; i < std::min(n - m, m); ++i) (*this)[m + i] = v[i]; } return *this; } F exp() const { return F(*this).exp_inplace(); } F &pow_inplace(long long k) { int n = (*this).size(), l = 0; assert(k >= 0); if(!k){ for(int i = 0; i < n; ++i) (*this)[i] = !i; return *this; } while(l < n and (*this)[l] == 0) ++l; if(l > (n - 1) / k or l == n) return *this = F(n); T c = (*this)[l]; (*this).erase((*this).begin(), (*this).begin() + l); (*this) /= c; (*this).log_inplace(); (*this).resize(n - l * k); (*this) *= k; (*this).exp_inplace(); (*this) *= c.pow(k); (*this).insert((*this).begin(), l * k, 0); return *this; } F pow(const long long k) const { return F(*this).pow_inplace(); } void spacemul(vector<pair<int, T>> g) { int n = (*this).size(); auto [d, c] = g.front(); if (d == 0) g.erase(g.begin()); else c = 0; for(int i=n-1;i>=0;i--){ (*this)[i] *= c; for (auto &[j, b] : g) { if (j > i) break; (*this)[i] += (*this)[i-j] * b; } } } void spacediv(vector<pair<int, T>> g) { int n = (*this).size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T ic = c.inv(); g.erase(g.begin()); for(int i=0;i<n;i++){ for (auto &[j, b] : g) { if (j > i) break; (*this)[i] -= (*this)[i-j] * b; } (*this)[i] *= ic; } } }; using fps = FormalPowerSeries<atcoder::modint998244353, FAST>; mint g(ll a,ll b){ if(a==1){ return mint(1); } if(b==1){ return mint(1)/mint(2); } if(a==b){ return mint(1)/mint(mint(2).pow(a-1)*k[a-1]); } return mint(1)/mint(mint(2).pow(b))*(mint(2)/mint(k[b-1])-mint(1)/mint(k[b])); } int main() { gbjsmzmfuuvdf(); com(); int n; cin>>n; mint h=mint(4).pow(n-1); for(int i=1;i<=n-1;i++){ h*=i; } vector<mint> a(n),b(n); lazy_segtree<S, op, e, F, mapping, composition, id> seg(n); for(int i=0;i<n;i++){ seg.apply(i,g(n-i,1)); } for(int i=2;i<n;i++){ seg.apply(i-1,n-1,g(n,i)); } for(int i=2;i<=n;i++){ seg.apply(n-1,g(i,i)); } for(int i=0;i<n;i++){ int x; cin>>x; a[i]=x; } mint ans=0; for(int i=0;i<n;i++){ ans+=a[i]*seg.prod(i,i+1).value; b[i]=seg.prod(i,i+1).value; } for(int i=n-1;i>=0;i--){ a.push_back(a[i]); b.push_back(b[i]); } n*=2; rever(b); vector<mint> c=convolution(a,b); for(int i=n;i<int(c.size());i++){ c[i%n]+=c[i]; } c.resize(n); rever(c); fps f(n); f[0]=1; cout<<(c[0]*h/mint(2)).val()<<endl; int k=min(int(sqrt(n/2)*5),int(n)); vector<vector<pair<int,mint>>> F(k+1); vector<mint> p; F[0]={{0,mint(1)}}; for(int i=1;i<=n/2;i++){ ll v=i%k; if(v==i){ unordered_map<int,mint> M; for(int j=0;j<int(F[i-1].size());j++){ M[F[i-1][j].fi]+=(n/2-3)*F[i-1][j].se; M[(F[i-1][j].fi-1+n)%n]+=F[i-1][j].se; M[(F[i-1][j].fi+1)%n]+=F[i-1][j].se; } for(auto e:M){ F[i].push_back({e.fi,e.se}); } mint ans=0; for(int j=0;j<int(F[i].size());j++){ ans+=F[i][j].se*c[F[i][j].fi]; } cout<<(ans*h/mint(2)).val()<<endl; } else{ mint ans=0; for(int j=0;j<int(F[v].size());j++){ ans+=F[v][j].se*c[F[v][j].fi]; } cout<<(ans*h/mint(2)).val()<<endl; } if(i%k==k-1){ if(int(p.size())==0){ unordered_map<int,mint> M; for(int j=0;j<int(F[k-1].size());j++){ M [F[k-1][j].fi]+=(n/2-3)*F[k-1][j].se; M[(F[k-1][j].fi-1+n)%n]+=F[k-1][j].se; M[(F[k-1][j].fi+1)%n]+=F[k-1][j].se; } vector<pair<int,int>> S(int(M.size())); int now=0; for(auto e:M){ if(e.fi>=n/2){ S[now]={e.fi-n,e.se.val()}; } else{ S[now]={e.fi,e.se.val()}; } now++; } sor(S); for(int j=0;j<int(S.size());j++){ p.push_back(S[j].se); } } auto d=convolution(c,p); for(int j=0;j<int(c.size());j++){ c[j]=0; } for(int j=0;j<int(d.size());j++){ c[(j-k+n)%n]+=d[j]; } } } }