結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | 👑 emthrm |
提出日時 | 2021-04-14 05:57:04 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 7 ms / 5,000 ms |
コード長 | 6,724 bytes |
コンパイル時間 | 1,931 ms |
コンパイル使用メモリ | 210,004 KB |
実行使用メモリ | 7,144 KB |
最終ジャッジ日時 | 2024-06-30 06:52:33 |
合計ジャッジ時間 | 3,169 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,940 KB |
testcase_17 | AC | 2 ms
6,944 KB |
testcase_18 | AC | 2 ms
6,944 KB |
testcase_19 | AC | 2 ms
6,940 KB |
testcase_20 | AC | 6 ms
7,144 KB |
testcase_21 | AC | 7 ms
7,132 KB |
testcase_22 | AC | 7 ms
7,108 KB |
testcase_23 | AC | 2 ms
6,944 KB |
testcase_24 | AC | 5 ms
6,940 KB |
testcase_25 | AC | 5 ms
6,944 KB |
testcase_26 | AC | 4 ms
6,940 KB |
testcase_27 | AC | 5 ms
6,944 KB |
testcase_28 | AC | 3 ms
6,940 KB |
testcase_29 | AC | 7 ms
6,944 KB |
testcase_30 | AC | 2 ms
6,940 KB |
testcase_31 | AC | 2 ms
6,944 KB |
testcase_32 | AC | 2 ms
6,940 KB |
testcase_33 | AC | 2 ms
6,944 KB |
testcase_34 | AC | 2 ms
6,944 KB |
testcase_35 | AC | 2 ms
6,940 KB |
testcase_36 | AC | 2 ms
6,940 KB |
testcase_37 | AC | 2 ms
6,944 KB |
testcase_38 | AC | 2 ms
6,940 KB |
testcase_39 | AC | 2 ms
6,940 KB |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <int M> struct MInt { unsigned int val; MInt(): val(0) {} MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {} static constexpr int get_mod() { return M; } static void set_mod(int divisor) { assert(divisor == M); } static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); } static MInt inv(int x, bool init = false) { // assert(0 <= x && x < M && std::__gcd(x, M) == 1); static std::vector<MInt> inverse{0, 1}; int prev = inverse.size(); if (init && x >= prev) { // "x!" and "M" must be disjoint. inverse.resize(x + 1); for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i); } if (x < inverse.size()) return inverse[x]; unsigned int a = x, b = M; int u = 1, v = 0; while (b) { unsigned int q = a / b; std::swap(a -= q * b, b); std::swap(u -= q * v, v); } return u; } static MInt fact(int x) { static std::vector<MInt> f{1}; int prev = f.size(); if (x >= prev) { f.resize(x + 1); for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i; } return f[x]; } static MInt fact_inv(int x) { static std::vector<MInt> finv{1}; int prev = finv.size(); if (x >= prev) { finv.resize(x + 1); finv[x] = inv(fact(x).val); for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i; } return finv[x]; } static MInt nCk(int n, int k) { if (n < 0 || n < k || k < 0) return 0; if (n - k > k) k = n - k; return fact(n) * fact_inv(k) * fact_inv(n - k); } static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); } static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); } static MInt large_nCk(long long n, int k) { if (n < 0 || n < k || k < 0) return 0; inv(k, true); MInt res = 1; for (int i = 1; i <= k; ++i) res *= inv(i) * n--; return res; } MInt pow(long long exponent) const { MInt tmp = *this, res = 1; while (exponent > 0) { if (exponent & 1) res *= tmp; tmp *= tmp; exponent >>= 1; } return res; } MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; } MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; } MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; } MInt &operator/=(const MInt &x) { return *this *= inv(x.val); } bool operator==(const MInt &x) const { return val == x.val; } bool operator!=(const MInt &x) const { return val != x.val; } bool operator<(const MInt &x) const { return val < x.val; } bool operator<=(const MInt &x) const { return val <= x.val; } bool operator>(const MInt &x) const { return val > x.val; } bool operator>=(const MInt &x) const { return val >= x.val; } MInt &operator++() { if (++val == M) val = 0; return *this; } MInt operator++(int) { MInt res = *this; ++*this; return res; } MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; } MInt operator--(int) { MInt res = *this; --*this; return res; } MInt operator+() const { return *this; } MInt operator-() const { return MInt(val ? M - val : 0); } MInt operator+(const MInt &x) const { return MInt(*this) += x; } MInt operator-(const MInt &x) const { return MInt(*this) -= x; } MInt operator*(const MInt &x) const { return MInt(*this) *= x; } MInt operator/(const MInt &x) const { return MInt(*this) /= x; } friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; } friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; } }; namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } } using ModInt = MInt<MOD>; template <typename T> T kita_masa(const std::vector<T> &c, const std::vector<T> &a, long long n) { if (n == 0) return a[0]; int k = c.size(); std::vector<T> coefficient[3]; for (int i = 0; i < 3; ++i) coefficient[i].assign(k, 0); if (k == 1) { coefficient[0][0] = c[0] * a[0]; } else { coefficient[0][1] = 1; } auto succ = [&c, k, &coefficient]() -> void { for (int i = 0; i < k - 1; ++i) coefficient[0][i] += coefficient[0].back() * c[i + 1]; coefficient[0].back() *= c[0]; std::rotate(coefficient[0].begin(), coefficient[0].begin() + k - 1, coefficient[0].end()); }; for (int bit = 62 - __builtin_clzll(n); bit >= 0; --bit) { for (int i = 1; i < 3; ++i) std::copy(coefficient[0].begin(), coefficient[0].end(), coefficient[i].begin()); for (T &e : coefficient[1]) e *= coefficient[2][0]; for (int i = 1; i < k; ++i) { succ(); for (int j = 0; j < k; ++j) coefficient[1][j] += coefficient[2][i] * coefficient[0][j]; } coefficient[0].swap(coefficient[1]); if (n >> bit & 1) succ(); } T res = 0; for (int i = 0; i < k; ++i) res += coefficient[0][i] * a[i]; return res; } int main() { int n; long long k; std::cin >> n >> k; --k; std::vector<ModInt> a(n); for (int i = 0; i < n; ++i) std::cin >> a[i]; if (2 <= n && n <= 10000 && n <= k && k < 1000000) { ModInt sum = std::accumulate(a.begin(), a.end(), ModInt(0)); a.resize(k + 1); for (int i = n; i <= k; ++i) { a[i] = sum; sum = sum + a[i] - a[i - n]; } std::cout << a[k] << ' ' << std::accumulate(a.begin(), a.end(), ModInt(0)) << '\n'; } else { std::cout << kita_masa(std::vector<ModInt>(n, 1), a, k) << ' '; // S(K) = 2S(K - 1) - S(K - (N + 1)) std::vector<ModInt> c(n + 1, 0); c[0] = -1; c[n] = 2; a.emplace_back(std::accumulate(a.begin(), a.end(), ModInt(0))); for (int i = 1; i < n + 1; ++i) a[i] += a[i - 1]; std::cout << kita_masa(c, a, k) << '\n'; } return 0; }