結果
問題 | No.1476 esreveR dna esreveR |
ユーザー | cotton_fn_ |
提出日時 | 2021-04-16 20:31:41 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 1 ms / 2,000 ms |
コード長 | 13,494 bytes |
コンパイル時間 | 28,193 ms |
コンパイル使用メモリ | 378,412 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-02 22:51:01 |
合計ジャッジ時間 | 12,251 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 1 ms
5,376 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
ソースコード
#![allow(unused_imports, unused_macros)] use kyoproio::*; use std::{ collections::*, io::{self, prelude::*}, iter, mem, }; fn run<I: Input, O: Write>(mut kin: I, mut out: O) { let n: u64 = kin.parse(); let ans = mint(6).pow(n / 2); wln!(out, "{}", ans); } use std::{cmp, fmt, marker::PhantomData, ops, sync::atomic}; pub type Mint = ModInt<Mod998244353>; pub fn mint(x: u32) -> Mint { ModInt::new(x) } pub trait Modulo { fn modulo() -> u32; } macro_rules! modulo_impl { ($($Type:ident $val:tt)*) => { $(pub struct $Type; impl Modulo for $Type { fn modulo() -> u32 { $val } })* }; } modulo_impl!(Mod998244353 998244353 Mod1000000007 1000000007); pub struct VarMod; static VAR_MOD: atomic::AtomicU32 = atomic::AtomicU32::new(0); pub fn set_var_mod(m: u32) { VAR_MOD.store(m, atomic::Ordering::Relaxed); } impl Modulo for VarMod { fn modulo() -> u32 { VAR_MOD.load(atomic::Ordering::Relaxed) } } #[repr(transparent)] pub struct ModInt<M>(u32, PhantomData<*const M>); impl<M: Modulo> ModInt<M> { pub fn new(x: u32) -> Self { debug_assert!(x < M::modulo()); Self(x, PhantomData) } pub fn normalize(self) -> Self { if self.0 < M::modulo() { self } else { Self::new(self.0 % M::modulo()) } } pub fn get(self) -> u32 { self.0 } pub fn inv(self) -> Self { assert_ne!(self, Self::new(0)); self.pow(M::modulo() - 2) } pub fn half(self) -> Self { Self::new(self.0 / 2 + self.0 % 2 * ((M::modulo() + 1) / 2)) } pub fn modulo() -> u32 { M::modulo() } } impl<M: Modulo> ops::Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { Self::new(if self.0 == 0 { 0 } else { M::modulo() - self.0 }) } } impl<M: Modulo> ops::Add for ModInt<M> { type Output = Self; fn add(self, rhs: Self) -> Self { let s = self.0 + rhs.0; Self::new(if s < M::modulo() { s } else { s - M::modulo() }) } } impl<M: Modulo> ops::Sub for ModInt<M> { type Output = Self; fn sub(self, rhs: Self) -> Self { Self::new(if self.0 >= rhs.0 { self.0 - rhs.0 } else { M::modulo() + self.0 - rhs.0 }) } } impl<M: Modulo> ops::Mul for ModInt<M> { type Output = Self; fn mul(self, rhs: Self) -> Self { Self::new((self.0 as u64 * rhs.0 as u64 % M::modulo() as u64) as u32) } } impl<M: Modulo> ops::Div for ModInt<M> { type Output = Self; fn div(self, rhs: Self) -> Self { self * rhs.inv() } } macro_rules! op_impl { ($($Op:ident $op:ident $OpAssign:ident $op_assign:ident)*) => { $(impl<M: Modulo> ops::$Op<&Self> for ModInt<M> { type Output = Self; fn $op(self, rhs: &Self) -> Self { self.$op(*rhs) } } impl<M: Modulo> ops::$Op<ModInt<M>> for &ModInt<M> { type Output = ModInt<M>; fn $op(self, rhs: ModInt<M>) -> ModInt<M> { (*self).$op(rhs) } } impl<M: Modulo> ops::$Op<&ModInt<M>> for &ModInt<M> { type Output = ModInt<M>; fn $op(self, rhs: &ModInt<M>) -> ModInt<M> { (*self).$op(*rhs) } } impl<M: Modulo> ops::$OpAssign for ModInt<M> { fn $op_assign(&mut self, rhs: Self) { *self = ops::$Op::$op(*self, rhs); } } impl<M: Modulo> ops::$OpAssign<&ModInt<M>> for ModInt<M> { fn $op_assign(&mut self, rhs: &ModInt<M>) { self.$op_assign(*rhs); } })* }; } op_impl! { Add add AddAssign add_assign Sub sub SubAssign sub_assign Mul mul MulAssign mul_assign Div div DivAssign div_assign } impl<M: Modulo> std::iter::Sum for ModInt<M> { fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { iter.fold(ModInt::new(0), |x, y| x + y) } } impl<M: Modulo> std::iter::Product for ModInt<M> { fn product<I: Iterator<Item = Self>>(iter: I) -> Self { iter.fold(ModInt::new(1), |x, y| x * y) } } pub trait Pow<T> { fn pow(self, n: T) -> Self; } impl<M: Modulo> Pow<u32> for ModInt<M> { fn pow(mut self, mut n: u32) -> Self { let mut y = Self::new(1); while n > 0 { if n % 2 == 1 { y *= self; } self *= self; n /= 2; } y } } macro_rules! mod_int_pow_impl { ($($T:ident)*) => { $(impl<M: Modulo> Pow<$T> for ModInt<M> { fn pow(self, n: $T) -> Self { self.pow(n.rem_euclid(M::modulo() as $T - 1) as u32) } })* }; } mod_int_pow_impl!(isize i32 i64 usize u64); macro_rules! mod_int_from_impl { ($($T:ident)*) => { $(impl<M: Modulo> From<$T> for ModInt<M> { #[allow(unused_comparisons)] fn from(x: $T) -> Self { if M::modulo() <= $T::max_value() as u32 { Self::new(x.rem_euclid(M::modulo() as $T) as u32) } else if x < 0 { Self::new((M::modulo() as i32 + x as i32) as u32) } else { Self::new(x as u32) } } })* } } mod_int_from_impl!(isize i8 i16 i32 i64 i128 usize u8 u16 u32 u64 u128); impl<M> Copy for ModInt<M> {} impl<M> Clone for ModInt<M> { fn clone(&self) -> Self { *self } } impl<M: Modulo> Default for ModInt<M> { fn default() -> Self { Self::new(0) } } impl<M> cmp::PartialEq for ModInt<M> { fn eq(&self, other: &Self) -> bool { self.0 == other.0 } } impl<M> cmp::Eq for ModInt<M> {} impl<M> cmp::PartialOrd for ModInt<M> { fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { self.0.partial_cmp(&other.0) } } impl<M> cmp::Ord for ModInt<M> { fn cmp(&self, other: &Self) -> cmp::Ordering { self.0.cmp(&other.0) } } impl<M> std::hash::Hash for ModInt<M> { fn hash<H: std::hash::Hasher>(&self, state: &mut H) { self.0.hash(state); } } impl<M> fmt::Display for ModInt<M> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.0.fmt(f) } } impl<M> fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.0.fmt(f) } } // ----------------------------------------------------------------------------- fn main() -> io::Result<()> { std::thread::Builder::new() .stack_size(1 << 26) .spawn(|| { run( Scanner::new(io::stdin().lock()), io::BufWriter::new(io::stdout().lock()), ) })? .join() .unwrap(); Ok(()) } #[macro_export] macro_rules! w { ($($arg:tt)*) => { write!($($arg)*).unwrap(); } } #[macro_export] macro_rules! wln { ($dst:expr $(, $($arg:tt)*)?) => {{ writeln!($dst $(, $($arg)*)?).unwrap(); #[cfg(debug_assertions)] $dst.flush().unwrap(); }} } #[macro_export] macro_rules! w_iter { ($dst:expr, $fmt:expr, $iter:expr, $delim:expr) => {{ let mut first = true; for elem in $iter { if first { w!($dst, $fmt, elem); first = false; } else { w!($dst, concat!($delim, $fmt), elem); } } }}; ($dst:expr, $fmt:expr, $iter:expr) => { w_iter!($dst, $fmt, $iter, " ") }; } #[macro_export] macro_rules! w_iter_ln { ($dst:expr, $($t:tt)*) => {{ w_iter!($dst, $($t)*); wln!($dst); }} } #[macro_export] macro_rules! e { ($($t:tt)*) => { #[cfg(debug_assertions)] eprint!($($t)*) } } #[macro_export] macro_rules! eln { ($($t:tt)*) => { #[cfg(debug_assertions)] eprintln!($($t)*) } } #[macro_export] macro_rules! __tstr { ($h:expr $(, $t:expr)+) => { concat!(__tstr!($($t),+), ", ", __tstr!(@)) }; ($h:expr) => { concat!(__tstr!(), " ", __tstr!(@)) }; () => { "\x1B[94m[{}:{}]\x1B[0m" }; (@) => { "\x1B[1;92m{}\x1B[0m = {:?}" } } #[macro_export] macro_rules! d { ($($a:expr),*) => { eln!(__tstr!($($a),*), file!(), line!(), $(stringify!($a), $a),*) }; } pub mod kyoproio { use std::{ fmt::Display, io::{self, prelude::*}, iter::FromIterator, marker::PhantomData, mem::{self, MaybeUninit}, str, }; pub trait Input { fn bytes(&mut self) -> &[u8]; fn str(&mut self) -> &str { str::from_utf8(self.bytes()).unwrap() } fn parse<T: Parse>(&mut self) -> T { T::parse(self) } fn parse_iter<T: Parse>(&mut self) -> ParseIter<T, Self> { ParseIter(self, PhantomData) } fn collect<T: Parse, B: FromIterator<T>>(&mut self, n: usize) -> B { self.parse_iter().take(n).collect() } fn map<T: Parse, U, F: FnMut(T) -> U, B: FromIterator<U>>(&mut self, n: usize, f: F) -> B { self.parse_iter().take(n).map(f).collect() } } impl<I: Input> Input for &mut I { fn bytes(&mut self) -> &[u8] { (**self).bytes() } } pub struct Scanner<R> { src: R, buf: Vec<u8>, pos: usize, len: usize, } impl<R: Read> Scanner<R> { pub fn new(src: R) -> Self { Self { src, buf: vec![0; 1 << 16], pos: 0, len: 0, } } fn read(&mut self) -> usize { if self.pos > 0 { self.buf.copy_within(self.pos..self.len, 0); self.len -= self.pos; self.pos = 0; } else if self.len >= self.buf.len() { self.buf.resize(2 * self.buf.len(), 0); } let n = self.src.read(&mut self.buf[self.len..]).unwrap(); self.len += n; assert!(self.len <= self.buf.len()); n } } impl<R: Read> Input for Scanner<R> { fn bytes(&mut self) -> &[u8] { loop { while let Some(d) = unsafe { self.buf.get_unchecked(self.pos..self.len) } .iter() .position(u8::is_ascii_whitespace) { let p = self.pos; self.pos += d + 1; if d > 0 { return unsafe { self.buf.get_unchecked(p..p + d) }; } } if self.read() == 0 { let p = self.pos; self.pos = self.len; return unsafe { self.buf.get_unchecked(p..self.len) }; } } } } pub struct ParseIter<'a, T, I: ?Sized>(&'a mut I, PhantomData<*const T>); impl<'a, T: Parse, I: Input + ?Sized> Iterator for ParseIter<'a, T, I> { type Item = T; fn next(&mut self) -> Option<T> { Some(self.0.parse()) } fn size_hint(&self) -> (usize, Option<usize>) { (!0, None) } } pub trait Parse: Sized { fn parse<I: Input + ?Sized>(src: &mut I) -> Self; } impl Parse for Vec<u8> { fn parse<I: Input + ?Sized>(src: &mut I) -> Self { src.bytes().to_owned() } } macro_rules! from_str { ($($T:ty)*) => {$( impl Parse for $T { fn parse<I: Input + ?Sized>(src: &mut I) -> Self { src.str().parse::<$T>().unwrap() } } )*} } from_str!(String char bool f32 f64); macro_rules! int { ($($I:ty: $U:ty)*) => {$( impl Parse for $I { fn parse<I: Input + ?Sized>(src: &mut I) -> Self { let f = |s: &[u8]| s.iter().fold(0, |x, b| 10 * x + (b & 0xf) as $I); let s = src.bytes(); if let Some((&b'-', t)) = s.split_first() { -f(t) } else { f(s) } } } impl Parse for $U { fn parse<I: Input + ?Sized>(src: &mut I) -> Self { src.bytes().iter().fold(0, |x, b| 10 * x + (b & 0xf) as $U) } } )*} } int!(isize:usize i8:u8 i16:u16 i32:u32 i64:u64 i128:u128); macro_rules! tuple { ($H:ident $($T:ident)*) => { impl<$H: Parse, $($T: Parse),*> Parse for ($H, $($T),*) { fn parse<I: Input + ?Sized>(src: &mut I) -> Self { ($H::parse(src), $($T::parse(src)),*) } } tuple!($($T)*); }; () => {} } tuple!(A B C D E F G); macro_rules! array { ($($N:literal)*) => {$( impl<T: Parse> Parse for [T; $N] { fn parse<I: Input + ?Sized>(src: &mut I) -> Self { unsafe { let mut arr: [MaybeUninit<T>; $N] = MaybeUninit::uninit().assume_init(); for elem in &mut arr { *elem = MaybeUninit::new(src.parse()); } mem::transmute_copy(&arr) } } } )*} } array!(1 2 3 4 5 6 7 8); }