結果

問題 No.1480 Many Complete Graphs
ユーザー hitonanode
提出日時 2021-04-16 20:32:42
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 104 ms / 2,000 ms
コード長 10,255 bytes
コンパイル時間 2,935 ms
コンパイル使用メモリ 215,292 KB
最終ジャッジ日時 2025-01-20 18:51:49
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 57
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each
    (begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l
    .second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l
    .second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end());
    return vec; }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']';
    return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return
    is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);},
    tpl); return os; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os;
    }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ',';
    os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os;
    }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}';
    return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')';
    return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v
    .second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp)
    os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9
    ;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET <<
    endl
#else
#define dbg(x) (x)
#endif
template <typename T, T INF = std::numeric_limits<T>::max() / 2, int INVALID = -1> struct ShortestPath {
int V, E;
bool single_positive_weight;
T wmin, wmax;
std::vector<std::vector<std::pair<int, T>>> to;
ShortestPath(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0), to(V) {}
void add_edge(int s, int t, T w) {
assert(0 <= s and s < V);
assert(0 <= t and t < V);
to[s].emplace_back(t, w);
E++;
if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false;
wmin = std::min(wmin, w);
wmax = std::max(wmax, w);
}
std::vector<T> dist;
std::vector<int> prev;
// Dijkstra algorithm
// Complexity: O(E log E)
void Dijkstra(int s) {
assert(0 <= s and s < V);
dist.assign(V, INF);
dist[s] = 0;
prev.assign(V, INVALID);
using P = std::pair<T, int>;
std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
pq.emplace(0, s);
while (!pq.empty()) {
T d;
int v;
std::tie(d, v) = pq.top();
pq.pop();
if (dist[v] < d) continue;
for (auto nx : to[v]) {
T dnx = d + nx.second;
if (dist[nx.first] > dnx) {
dist[nx.first] = dnx, prev[nx.first] = v;
pq.emplace(dnx, nx.first);
}
}
}
}
// Bellman-Ford algorithm
// Complexity: O(VE)
bool BellmanFord(int s, int nb_loop) {
assert(0 <= s and s < V);
dist.assign(V, INF), prev.assign(V, INVALID);
dist[s] = 0;
for (int l = 0; l < nb_loop; l++) {
bool upd = false;
for (int v = 0; v < V; v++) {
if (dist[v] == INF) continue;
for (auto nx : to[v]) {
T dnx = dist[v] + nx.second;
if (dist[nx.first] > dnx) dist[nx.first] = dnx, prev[nx.first] = v, upd = true;
}
}
if (!upd) return true;
}
return false;
}
// Bellman-ford algorithm using queue (deque)
// Complexity: O(VE)
// Requirement: no negative loop
void SPFA(int s) {
assert(0 <= s and s < V);
dist.assign(V, INF);
prev.assign(V, INVALID);
std::deque<int> q;
std::vector<char> in_queue(V);
dist[s] = 0;
q.push_back(s), in_queue[s] = 1;
while (!q.empty()) {
int now = q.front();
q.pop_front(), in_queue[now] = 0;
for (auto nx : to[now]) {
T dnx = dist[now] + nx.second;
int nxt = nx.first;
if (dist[nxt] > dnx) {
dist[nxt] = dnx;
if (!in_queue[nxt]) {
if (q.size() and dnx < dist[q.front()]) { // Small label first optimization
q.push_front(nxt);
} else {
q.push_back(nxt);
}
prev[nxt] = now, in_queue[nxt] = 1;
}
}
}
}
}
void ZeroOneBFS(int s) {
assert(0 <= s and s < V);
dist.assign(V, INF), prev.assign(V, INVALID);
dist[s] = 0;
std::deque<int> que;
que.push_back(s);
while (!que.empty()) {
int v = que.front();
que.pop_front();
for (auto nx : to[v]) {
T dnx = dist[v] + nx.second;
if (dist[nx.first] > dnx) {
dist[nx.first] = dnx, prev[nx.first] = v;
if (nx.second) {
que.push_back(nx.first);
} else {
que.push_front(nx.first);
}
}
}
}
}
void solve(int s) {
if (wmin >= 0) {
if (single_positive_weight) {
ZeroOneBFS(s);
} else {
Dijkstra(s);
}
} else {
BellmanFord(s, V);
}
}
// Warshall-Floyd algorithm
// Complexity: O(E + V^3)
std::vector<std::vector<T>> dist2d;
void WarshallFloyd() {
dist2d.assign(V, std::vector<T>(V, INF));
for (int i = 0; i < V; i++) {
dist2d[i][i] = 0;
for (auto p : to[i]) dist2d[i][p.first] = std::min(dist2d[i][p.first], p.second);
}
for (int k = 0; k < V; k++) {
for (int i = 0; i < V; i++) {
if (dist2d[i][k] == INF) continue;
for (int j = 0; j < V; j++) {
if (dist2d[k][j] == INF) continue;
dist2d[i][j] = std::min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]);
}
}
}
}
void dump_graphviz(std::string filename = "shortest_path") const {
std::ofstream ss(filename + ".DOT");
ss << "digraph{\n";
for (int i = 0; i < V; i++) {
for (const auto &e : to[i]) ss << i << "->" << e.first << "[label=" << e.second << "];\n";
}
ss << "}\n";
ss.close();
return;
}
};
int main() {
int N, M;
cin >> N >> M;
ShortestPath<lint, 1LL << 60> graph(N + M * 2);
REP(m, M) {
int K;
lint C;
cin >> K >> C;
vector<lint> S(K);
cin >> S;
REP(i, K) {
graph.add_edge(S[i] - 1, N + m * 2 + S[i] % 2, S[i]);
if (S[i] % 2) {
graph.add_edge(N + m * 2, S[i] - 1, C * 2 + 1 + S[i]);
graph.add_edge(N + m * 2 + 1, S[i] - 1, C * 2 + S[i]);
} else {
graph.add_edge(N + m * 2, S[i] - 1, C * 2 + S[i]);
graph.add_edge(N + m * 2 + 1, S[i] - 1, C * 2 + S[i] + 1);
}
}
}
graph.solve(0);
dbg(graph.dist);
auto ret = graph.dist[N - 1];
dbg(ret);
if (ret < (1LL << 50)) cout << ret / 2 << '\n';
else puts("-1");
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0