結果

問題 No.1480 Many Complete Graphs
ユーザー 👑 hitonanodehitonanode
提出日時 2021-04-16 20:32:42
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 101 ms / 2,000 ms
コード長 10,255 bytes
コンパイル時間 2,525 ms
コンパイル使用メモリ 221,640 KB
実行使用メモリ 16,500 KB
最終ジャッジ日時 2023-09-16 02:47:36
合計ジャッジ時間 7,166 ms
ジャッジサーバーID
(参考情報)
judge11 / judge12
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
4,384 KB
testcase_01 AC 2 ms
4,376 KB
testcase_02 AC 2 ms
4,376 KB
testcase_03 AC 2 ms
4,380 KB
testcase_04 AC 2 ms
4,380 KB
testcase_05 AC 2 ms
4,376 KB
testcase_06 AC 2 ms
4,376 KB
testcase_07 AC 2 ms
4,376 KB
testcase_08 AC 2 ms
4,380 KB
testcase_09 AC 2 ms
4,376 KB
testcase_10 AC 2 ms
4,376 KB
testcase_11 AC 2 ms
4,380 KB
testcase_12 AC 2 ms
4,376 KB
testcase_13 AC 16 ms
8,524 KB
testcase_14 AC 12 ms
6,688 KB
testcase_15 AC 28 ms
9,824 KB
testcase_16 AC 17 ms
8,156 KB
testcase_17 AC 17 ms
7,664 KB
testcase_18 AC 5 ms
6,220 KB
testcase_19 AC 16 ms
7,736 KB
testcase_20 AC 24 ms
8,496 KB
testcase_21 AC 18 ms
8,328 KB
testcase_22 AC 10 ms
6,016 KB
testcase_23 AC 40 ms
13,332 KB
testcase_24 AC 40 ms
11,524 KB
testcase_25 AC 56 ms
13,252 KB
testcase_26 AC 60 ms
15,184 KB
testcase_27 AC 38 ms
11,632 KB
testcase_28 AC 44 ms
14,560 KB
testcase_29 AC 45 ms
14,492 KB
testcase_30 AC 45 ms
14,424 KB
testcase_31 AC 47 ms
14,424 KB
testcase_32 AC 45 ms
14,500 KB
testcase_33 AC 45 ms
14,496 KB
testcase_34 AC 46 ms
14,420 KB
testcase_35 AC 44 ms
14,388 KB
testcase_36 AC 45 ms
14,404 KB
testcase_37 AC 46 ms
14,444 KB
testcase_38 AC 47 ms
14,536 KB
testcase_39 AC 43 ms
14,472 KB
testcase_40 AC 45 ms
14,472 KB
testcase_41 AC 45 ms
14,472 KB
testcase_42 AC 45 ms
14,464 KB
testcase_43 AC 46 ms
14,420 KB
testcase_44 AC 46 ms
14,420 KB
testcase_45 AC 47 ms
14,592 KB
testcase_46 AC 47 ms
14,488 KB
testcase_47 AC 100 ms
16,500 KB
testcase_48 AC 101 ms
16,424 KB
testcase_49 AC 98 ms
16,432 KB
testcase_50 AC 54 ms
16,172 KB
testcase_51 AC 101 ms
16,444 KB
testcase_52 AC 72 ms
16,080 KB
testcase_53 AC 72 ms
15,992 KB
testcase_54 AC 74 ms
16,072 KB
testcase_55 AC 76 ms
15,984 KB
testcase_56 AC 70 ms
15,992 KB
testcase_57 AC 46 ms
15,388 KB
testcase_58 AC 47 ms
15,628 KB
evil_aftercontest.txt AC 94 ms
28,124 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#else
#define dbg(x) (x)
#endif

template <typename T, T INF = std::numeric_limits<T>::max() / 2, int INVALID = -1> struct ShortestPath {
    int V, E;
    bool single_positive_weight;
    T wmin, wmax;
    std::vector<std::vector<std::pair<int, T>>> to;

    ShortestPath(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0), to(V) {}
    void add_edge(int s, int t, T w) {
        assert(0 <= s and s < V);
        assert(0 <= t and t < V);
        to[s].emplace_back(t, w);
        E++;
        if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false;
        wmin = std::min(wmin, w);
        wmax = std::max(wmax, w);
    }

    std::vector<T> dist;
    std::vector<int> prev;

    // Dijkstra algorithm
    // Complexity: O(E log E)
    void Dijkstra(int s) {
        assert(0 <= s and s < V);
        dist.assign(V, INF);
        dist[s] = 0;
        prev.assign(V, INVALID);
        using P = std::pair<T, int>;
        std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
        pq.emplace(0, s);
        while (!pq.empty()) {
            T d;
            int v;
            std::tie(d, v) = pq.top();
            pq.pop();
            if (dist[v] < d) continue;
            for (auto nx : to[v]) {
                T dnx = d + nx.second;
                if (dist[nx.first] > dnx) {
                    dist[nx.first] = dnx, prev[nx.first] = v;
                    pq.emplace(dnx, nx.first);
                }
            }
        }
    }

    // Bellman-Ford algorithm
    // Complexity: O(VE)
    bool BellmanFord(int s, int nb_loop) {
        assert(0 <= s and s < V);
        dist.assign(V, INF), prev.assign(V, INVALID);
        dist[s] = 0;
        for (int l = 0; l < nb_loop; l++) {
            bool upd = false;
            for (int v = 0; v < V; v++) {
                if (dist[v] == INF) continue;
                for (auto nx : to[v]) {
                    T dnx = dist[v] + nx.second;
                    if (dist[nx.first] > dnx) dist[nx.first] = dnx, prev[nx.first] = v, upd = true;
                }
            }
            if (!upd) return true;
        }
        return false;
    }

    // Bellman-ford algorithm using queue (deque)
    // Complexity: O(VE)
    // Requirement: no negative loop
    void SPFA(int s) {
        assert(0 <= s and s < V);
        dist.assign(V, INF);
        prev.assign(V, INVALID);
        std::deque<int> q;
        std::vector<char> in_queue(V);
        dist[s] = 0;
        q.push_back(s), in_queue[s] = 1;
        while (!q.empty()) {
            int now = q.front();
            q.pop_front(), in_queue[now] = 0;
            for (auto nx : to[now]) {
                T dnx = dist[now] + nx.second;
                int nxt = nx.first;
                if (dist[nxt] > dnx) {
                    dist[nxt] = dnx;
                    if (!in_queue[nxt]) {
                        if (q.size() and dnx < dist[q.front()]) { // Small label first optimization
                            q.push_front(nxt);
                        } else {
                            q.push_back(nxt);
                        }
                        prev[nxt] = now, in_queue[nxt] = 1;
                    }
                }
            }
        }
    }

    void ZeroOneBFS(int s) {
        assert(0 <= s and s < V);
        dist.assign(V, INF), prev.assign(V, INVALID);
        dist[s] = 0;
        std::deque<int> que;
        que.push_back(s);
        while (!que.empty()) {
            int v = que.front();
            que.pop_front();
            for (auto nx : to[v]) {
                T dnx = dist[v] + nx.second;
                if (dist[nx.first] > dnx) {
                    dist[nx.first] = dnx, prev[nx.first] = v;
                    if (nx.second) {
                        que.push_back(nx.first);
                    } else {
                        que.push_front(nx.first);
                    }
                }
            }
        }
    }

    void solve(int s) {
        if (wmin >= 0) {
            if (single_positive_weight) {
                ZeroOneBFS(s);
            } else {
                Dijkstra(s);
            }
        } else {
            BellmanFord(s, V);
        }
    }

    // Warshall-Floyd algorithm
    // Complexity: O(E + V^3)
    std::vector<std::vector<T>> dist2d;
    void WarshallFloyd() {
        dist2d.assign(V, std::vector<T>(V, INF));
        for (int i = 0; i < V; i++) {
            dist2d[i][i] = 0;
            for (auto p : to[i]) dist2d[i][p.first] = std::min(dist2d[i][p.first], p.second);
        }
        for (int k = 0; k < V; k++) {
            for (int i = 0; i < V; i++) {
                if (dist2d[i][k] == INF) continue;
                for (int j = 0; j < V; j++) {
                    if (dist2d[k][j] == INF) continue;
                    dist2d[i][j] = std::min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]);
                }
            }
        }
    }

    void dump_graphviz(std::string filename = "shortest_path") const {
        std::ofstream ss(filename + ".DOT");
        ss << "digraph{\n";
        for (int i = 0; i < V; i++) {
            for (const auto &e : to[i]) ss << i << "->" << e.first << "[label=" << e.second << "];\n";
        }
        ss << "}\n";
        ss.close();
        return;
    }
};


int main() {
    int N, M;
    cin >> N >> M;
    ShortestPath<lint, 1LL << 60> graph(N + M * 2);
    REP(m, M) {
        int K;
        lint C;
        cin >> K >> C;
        vector<lint> S(K);
        cin >> S;

        REP(i, K) {
            graph.add_edge(S[i] - 1, N + m * 2 + S[i] % 2, S[i]);
            if (S[i] % 2) {
                graph.add_edge(N + m * 2, S[i] - 1, C * 2 + 1 + S[i]);
                graph.add_edge(N + m * 2 + 1, S[i] - 1, C * 2 + S[i]);
            } else {
                graph.add_edge(N + m * 2, S[i] - 1, C * 2 + S[i]);
                graph.add_edge(N + m * 2 + 1, S[i] - 1, C * 2 + S[i] + 1);
            }
        }
    }
    graph.solve(0);
    dbg(graph.dist);
    auto ret = graph.dist[N - 1];
    dbg(ret);
    if (ret < (1LL << 50)) cout << ret / 2 << '\n';
    else puts("-1");
}
0