結果
問題 | No.1480 Many Complete Graphs |
ユーザー |
![]() |
提出日時 | 2021-04-16 20:32:42 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 104 ms / 2,000 ms |
コード長 | 10,255 bytes |
コンパイル時間 | 2,935 ms |
コンパイル使用メモリ | 215,292 KB |
最終ジャッジ日時 | 2025-01-20 18:51:49 |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 57 |
ソースコード
#include <bits/stdc++.h>using namespace std;using lint = long long;using pint = pair<int, int>;using plint = pair<lint, lint>;struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;#define ALL(x) (x).begin(), (x).end()#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)#define REP(i, n) FOR(i,0,n)#define IREP(i, n) IFOR(i,0,n)template <typename T, typename V>void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end());return vec; }template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']';return os; }#if __cplusplus >= 201703Ltemplate <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); returnis; }template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);},tpl); return os; }#endiftemplate <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os;}template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ',';os << '}'; return os; }template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os;}template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}';return os; }template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')';return os; }template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp)os << v.first << "=>" << v.second << ','; os << '}'; return os; }#ifdef HITONANODE_LOCALconst string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET <<endl#else#define dbg(x) (x)#endiftemplate <typename T, T INF = std::numeric_limits<T>::max() / 2, int INVALID = -1> struct ShortestPath {int V, E;bool single_positive_weight;T wmin, wmax;std::vector<std::vector<std::pair<int, T>>> to;ShortestPath(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0), to(V) {}void add_edge(int s, int t, T w) {assert(0 <= s and s < V);assert(0 <= t and t < V);to[s].emplace_back(t, w);E++;if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false;wmin = std::min(wmin, w);wmax = std::max(wmax, w);}std::vector<T> dist;std::vector<int> prev;// Dijkstra algorithm// Complexity: O(E log E)void Dijkstra(int s) {assert(0 <= s and s < V);dist.assign(V, INF);dist[s] = 0;prev.assign(V, INVALID);using P = std::pair<T, int>;std::priority_queue<P, std::vector<P>, std::greater<P>> pq;pq.emplace(0, s);while (!pq.empty()) {T d;int v;std::tie(d, v) = pq.top();pq.pop();if (dist[v] < d) continue;for (auto nx : to[v]) {T dnx = d + nx.second;if (dist[nx.first] > dnx) {dist[nx.first] = dnx, prev[nx.first] = v;pq.emplace(dnx, nx.first);}}}}// Bellman-Ford algorithm// Complexity: O(VE)bool BellmanFord(int s, int nb_loop) {assert(0 <= s and s < V);dist.assign(V, INF), prev.assign(V, INVALID);dist[s] = 0;for (int l = 0; l < nb_loop; l++) {bool upd = false;for (int v = 0; v < V; v++) {if (dist[v] == INF) continue;for (auto nx : to[v]) {T dnx = dist[v] + nx.second;if (dist[nx.first] > dnx) dist[nx.first] = dnx, prev[nx.first] = v, upd = true;}}if (!upd) return true;}return false;}// Bellman-ford algorithm using queue (deque)// Complexity: O(VE)// Requirement: no negative loopvoid SPFA(int s) {assert(0 <= s and s < V);dist.assign(V, INF);prev.assign(V, INVALID);std::deque<int> q;std::vector<char> in_queue(V);dist[s] = 0;q.push_back(s), in_queue[s] = 1;while (!q.empty()) {int now = q.front();q.pop_front(), in_queue[now] = 0;for (auto nx : to[now]) {T dnx = dist[now] + nx.second;int nxt = nx.first;if (dist[nxt] > dnx) {dist[nxt] = dnx;if (!in_queue[nxt]) {if (q.size() and dnx < dist[q.front()]) { // Small label first optimizationq.push_front(nxt);} else {q.push_back(nxt);}prev[nxt] = now, in_queue[nxt] = 1;}}}}}void ZeroOneBFS(int s) {assert(0 <= s and s < V);dist.assign(V, INF), prev.assign(V, INVALID);dist[s] = 0;std::deque<int> que;que.push_back(s);while (!que.empty()) {int v = que.front();que.pop_front();for (auto nx : to[v]) {T dnx = dist[v] + nx.second;if (dist[nx.first] > dnx) {dist[nx.first] = dnx, prev[nx.first] = v;if (nx.second) {que.push_back(nx.first);} else {que.push_front(nx.first);}}}}}void solve(int s) {if (wmin >= 0) {if (single_positive_weight) {ZeroOneBFS(s);} else {Dijkstra(s);}} else {BellmanFord(s, V);}}// Warshall-Floyd algorithm// Complexity: O(E + V^3)std::vector<std::vector<T>> dist2d;void WarshallFloyd() {dist2d.assign(V, std::vector<T>(V, INF));for (int i = 0; i < V; i++) {dist2d[i][i] = 0;for (auto p : to[i]) dist2d[i][p.first] = std::min(dist2d[i][p.first], p.second);}for (int k = 0; k < V; k++) {for (int i = 0; i < V; i++) {if (dist2d[i][k] == INF) continue;for (int j = 0; j < V; j++) {if (dist2d[k][j] == INF) continue;dist2d[i][j] = std::min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]);}}}}void dump_graphviz(std::string filename = "shortest_path") const {std::ofstream ss(filename + ".DOT");ss << "digraph{\n";for (int i = 0; i < V; i++) {for (const auto &e : to[i]) ss << i << "->" << e.first << "[label=" << e.second << "];\n";}ss << "}\n";ss.close();return;}};int main() {int N, M;cin >> N >> M;ShortestPath<lint, 1LL << 60> graph(N + M * 2);REP(m, M) {int K;lint C;cin >> K >> C;vector<lint> S(K);cin >> S;REP(i, K) {graph.add_edge(S[i] - 1, N + m * 2 + S[i] % 2, S[i]);if (S[i] % 2) {graph.add_edge(N + m * 2, S[i] - 1, C * 2 + 1 + S[i]);graph.add_edge(N + m * 2 + 1, S[i] - 1, C * 2 + S[i]);} else {graph.add_edge(N + m * 2, S[i] - 1, C * 2 + S[i]);graph.add_edge(N + m * 2 + 1, S[i] - 1, C * 2 + S[i] + 1);}}}graph.solve(0);dbg(graph.dist);auto ret = graph.dist[N - 1];dbg(ret);if (ret < (1LL << 50)) cout << ret / 2 << '\n';else puts("-1");}