結果
問題 | No.1480 Many Complete Graphs |
ユーザー | 👑 emthrm |
提出日時 | 2021-04-16 21:03:30 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 115 ms / 2,000 ms |
コード長 | 3,598 bytes |
コンパイル時間 | 2,377 ms |
コンパイル使用メモリ | 212,228 KB |
最終ジャッジ日時 | 2025-01-20 19:13:49 |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 57 |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <typename CostType> struct Edge { int src, dst; CostType cost; Edge(int src, int dst, CostType cost = 0) : src(src), dst(dst), cost(cost) {} inline bool operator<(const Edge &x) const { return cost != x.cost ? cost < x.cost : dst != x.dst ? dst < x.dst : src < x.src; } inline bool operator<=(const Edge &x) const { return !(x < *this); } inline bool operator>(const Edge &x) const { return x < *this; } inline bool operator>=(const Edge &x) const { return !(*this < x); } }; template <typename CostType> struct Dijkstra { const CostType inf; Dijkstra(const std::vector<std::vector<Edge<CostType>>> &graph, const CostType inf = std::numeric_limits<CostType>::max()) : graph(graph), inf(inf) {} std::vector<CostType> build(int s) { is_built = true; int n = graph.size(); std::vector<CostType> dist(n, inf); dist[s] = 0; prev.assign(n, -1); using Pci = std::pair<CostType, int>; std::priority_queue<Pci, std::vector<Pci>, std::greater<Pci>> que; que.emplace(0, s); while (!que.empty()) { CostType cost; int ver; std::tie(cost, ver) = que.top(); que.pop(); if (dist[ver] < cost) continue; for (const Edge<CostType> &e : graph[ver]) { if (dist[e.dst] > dist[ver] + e.cost) { dist[e.dst] = dist[ver] + e.cost; prev[e.dst] = ver; que.emplace(dist[e.dst], e.dst); } } } return dist; } std::vector<int> build_path(int t) const { assert(is_built); std::vector<int> res; for (; t != -1; t = prev[t]) res.emplace_back(t); std::reverse(res.begin(), res.end()); return res; } private: bool is_built = false; std::vector<std::vector<Edge<CostType>>> graph; std::vector<int> prev; }; int main() { int n, m; cin >> n >> m; vector<vector<Edge<ll>>> graph(n + 1 + m * 3); REP(i, m) { int k, c; cin >> k >> c; vector<int> s[2]; while (k--) { int sj; cin >> sj; s[sj & 1].emplace_back(sj); } for (int ver : s[0]) { graph[ver].emplace_back(ver, n + 1 + i * 3, ver / 2 + c); graph[n + 1 + i * 3].emplace_back(n + 1 + i * 3, ver, ver / 2); graph[n + 1 + i * 3 + 1].emplace_back(n + 1 + i * 3 + 1, ver, ver / 2); } for (int ver : s[1]) { graph[ver].emplace_back(ver, n + 1 + i * 3 + 1, (ver + 1) / 2 + c); graph[n + 1 + i * 3].emplace_back(n + 1 + i * 3, ver, (ver + 1) / 2); graph[n + 1 + i * 3 + 2].emplace_back(n + 1 + i * 3 + 2, ver, ver / 2); } graph[n + 1 + i * 3 + 1].emplace_back(n + 1 + i * 3 + 1, n + 1 + i * 3 + 2, 0); } ll ans = Dijkstra(graph, LINF).build(1)[n]; cout << (ans == LINF ? -1 : ans) << '\n'; return 0; }