結果
問題 | No.1480 Many Complete Graphs |
ユーザー |
👑 ![]() |
提出日時 | 2021-04-16 21:03:30 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 115 ms / 2,000 ms |
コード長 | 3,598 bytes |
コンパイル時間 | 2,377 ms |
コンパイル使用メモリ | 212,228 KB |
最終ジャッジ日時 | 2025-01-20 19:13:49 |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 57 |
ソースコード
#define _USE_MATH_DEFINES#include <bits/stdc++.h>using namespace std;#define FOR(i,m,n) for(int i=(m);i<(n);++i)#define REP(i,n) FOR(i,0,n)#define ALL(v) (v).begin(),(v).end()using ll = long long;constexpr int INF = 0x3f3f3f3f;constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;constexpr double EPS = 1e-8;constexpr int MOD = 1000000007;// constexpr int MOD = 998244353;constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }struct IOSetup {IOSetup() {std::cin.tie(nullptr);std::ios_base::sync_with_stdio(false);std::cout << fixed << setprecision(20);}} iosetup;template <typename CostType>struct Edge {int src, dst; CostType cost;Edge(int src, int dst, CostType cost = 0) : src(src), dst(dst), cost(cost) {}inline bool operator<(const Edge &x) const {return cost != x.cost ? cost < x.cost : dst != x.dst ? dst < x.dst : src < x.src;}inline bool operator<=(const Edge &x) const { return !(x < *this); }inline bool operator>(const Edge &x) const { return x < *this; }inline bool operator>=(const Edge &x) const { return !(*this < x); }};template <typename CostType>struct Dijkstra {const CostType inf;Dijkstra(const std::vector<std::vector<Edge<CostType>>> &graph,const CostType inf = std::numeric_limits<CostType>::max()): graph(graph), inf(inf) {}std::vector<CostType> build(int s) {is_built = true;int n = graph.size();std::vector<CostType> dist(n, inf);dist[s] = 0;prev.assign(n, -1);using Pci = std::pair<CostType, int>;std::priority_queue<Pci, std::vector<Pci>, std::greater<Pci>> que;que.emplace(0, s);while (!que.empty()) {CostType cost; int ver; std::tie(cost, ver) = que.top(); que.pop();if (dist[ver] < cost) continue;for (const Edge<CostType> &e : graph[ver]) {if (dist[e.dst] > dist[ver] + e.cost) {dist[e.dst] = dist[ver] + e.cost;prev[e.dst] = ver;que.emplace(dist[e.dst], e.dst);}}}return dist;}std::vector<int> build_path(int t) const {assert(is_built);std::vector<int> res;for (; t != -1; t = prev[t]) res.emplace_back(t);std::reverse(res.begin(), res.end());return res;}private:bool is_built = false;std::vector<std::vector<Edge<CostType>>> graph;std::vector<int> prev;};int main() {int n, m; cin >> n >> m;vector<vector<Edge<ll>>> graph(n + 1 + m * 3);REP(i, m) {int k, c; cin >> k >> c;vector<int> s[2];while (k--) {int sj; cin >> sj;s[sj & 1].emplace_back(sj);}for (int ver : s[0]) {graph[ver].emplace_back(ver, n + 1 + i * 3, ver / 2 + c);graph[n + 1 + i * 3].emplace_back(n + 1 + i * 3, ver, ver / 2);graph[n + 1 + i * 3 + 1].emplace_back(n + 1 + i * 3 + 1, ver, ver / 2);}for (int ver : s[1]) {graph[ver].emplace_back(ver, n + 1 + i * 3 + 1, (ver + 1) / 2 + c);graph[n + 1 + i * 3].emplace_back(n + 1 + i * 3, ver, (ver + 1) / 2);graph[n + 1 + i * 3 + 2].emplace_back(n + 1 + i * 3 + 2, ver, ver / 2);}graph[n + 1 + i * 3 + 1].emplace_back(n + 1 + i * 3 + 1, n + 1 + i * 3 + 2, 0);}ll ans = Dijkstra(graph, LINF).build(1)[n];cout << (ans == LINF ? -1 : ans) << '\n';return 0;}