結果

問題 No.1480 Many Complete Graphs
ユーザー 👑 emthrmemthrm
提出日時 2021-04-16 21:03:30
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 115 ms / 2,000 ms
コード長 3,598 bytes
コンパイル時間 2,377 ms
コンパイル使用メモリ 212,228 KB
最終ジャッジ日時 2025-01-20 19:13:49
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 57
権限があれば一括ダウンロードができます

ソースコード

diff #

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <typename CostType>
struct Edge {
  int src, dst; CostType cost;
  Edge(int src, int dst, CostType cost = 0) : src(src), dst(dst), cost(cost) {}
  inline bool operator<(const Edge &x) const {
    return cost != x.cost ? cost < x.cost : dst != x.dst ? dst < x.dst : src < x.src;
  }
  inline bool operator<=(const Edge &x) const { return !(x < *this); }
  inline bool operator>(const Edge &x) const { return x < *this; }
  inline bool operator>=(const Edge &x) const { return !(*this < x); }
};

template <typename CostType>
struct Dijkstra {
  const CostType inf;

  Dijkstra(const std::vector<std::vector<Edge<CostType>>> &graph,
           const CostType inf = std::numeric_limits<CostType>::max())
  : graph(graph), inf(inf) {}

  std::vector<CostType> build(int s) {
    is_built = true;
    int n = graph.size();
    std::vector<CostType> dist(n, inf);
    dist[s] = 0;
    prev.assign(n, -1);
    using Pci = std::pair<CostType, int>;
    std::priority_queue<Pci, std::vector<Pci>, std::greater<Pci>> que;
    que.emplace(0, s);
    while (!que.empty()) {
      CostType cost; int ver; std::tie(cost, ver) = que.top(); que.pop();
      if (dist[ver] < cost) continue;
      for (const Edge<CostType> &e : graph[ver]) {
        if (dist[e.dst] > dist[ver] + e.cost) {
          dist[e.dst] = dist[ver] + e.cost;
          prev[e.dst] = ver;
          que.emplace(dist[e.dst], e.dst);
        }
      }
    }
    return dist;
  }

  std::vector<int> build_path(int t) const {
    assert(is_built);
    std::vector<int> res;
    for (; t != -1; t = prev[t]) res.emplace_back(t);
    std::reverse(res.begin(), res.end());
    return res;
  }

private:
  bool is_built = false;
  std::vector<std::vector<Edge<CostType>>> graph;
  std::vector<int> prev;
};

int main() {
  int n, m; cin >> n >> m;
  vector<vector<Edge<ll>>> graph(n + 1 + m * 3);
  REP(i, m) {
    int k, c; cin >> k >> c;
    vector<int> s[2];
    while (k--) {
      int sj; cin >> sj;
      s[sj & 1].emplace_back(sj);
    }
    for (int ver : s[0]) {
      graph[ver].emplace_back(ver, n + 1 + i * 3, ver / 2 + c);
      graph[n + 1 + i * 3].emplace_back(n + 1 + i * 3, ver, ver / 2);
      graph[n + 1 + i * 3 + 1].emplace_back(n + 1 + i * 3 + 1, ver, ver / 2);
    }
    for (int ver : s[1]) {
      graph[ver].emplace_back(ver, n + 1 + i * 3 + 1, (ver + 1) / 2 + c);
      graph[n + 1 + i * 3].emplace_back(n + 1 + i * 3, ver, (ver + 1) / 2);
      graph[n + 1 + i * 3 + 2].emplace_back(n + 1 + i * 3 + 2, ver, ver / 2);
    }
    graph[n + 1 + i * 3 + 1].emplace_back(n + 1 + i * 3 + 1, n + 1 + i * 3 + 2, 0);
  }
  ll ans = Dijkstra(graph, LINF).build(1)[n];
  cout << (ans == LINF ? -1 : ans) << '\n';
  return 0;
}
0