結果
問題 | No.1479 Matrix Eraser |
ユーザー |
![]() |
提出日時 | 2021-04-16 21:04:17 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 6,192 bytes |
コンパイル時間 | 2,421 ms |
コンパイル使用メモリ | 190,632 KB |
実行使用メモリ | 18,980 KB |
最終ジャッジ日時 | 2024-07-02 23:58:16 |
合計ジャッジ時間 | 41,472 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 38 TLE * 1 |
ソースコード
#include <bits/stdc++.h>//#include <atcoder/all>//using namespace atcoder;#pragma GCC target ("avx2")#pragma GCC optimization ("O3")#pragma GCC optimization ("unroll-loops")using namespace std;typedef vector<int> VI;typedef vector<VI> VVI;typedef vector<string> VS;typedef pair<int, int> PII;typedef pair<int, int> pii;typedef pair<long long, long long> PLL;typedef pair<int, PII> TIII;typedef long long ll;typedef long double ld;typedef unsigned long long ull;#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)#define REP(i, n) FOR(i, 0, n)#define rep(i, a, b) for (int i = a; i < (b); ++i)#define trav(a, x) for (auto &a : x)#define all(x) x.begin(), x.end()#define MOD 1000000007template<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}template<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}const double EPS = 1e-12, PI = acos(-1);const double pi = 3.141592653589793238462643383279;//ここから編集typedef string::const_iterator State;ll GCD(ll a, ll b){return (b==0)?a:GCD(b, a%b);}ll LCM(ll a, ll b){return a/GCD(a, b) * b;}template< int mod >struct ModInt {int x;ModInt() : x(0) {}ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}ModInt &operator+=(const ModInt &p) {if((x += p.x) >= mod) x -= mod;return *this;}ModInt &operator-=(const ModInt &p) {if((x += mod - p.x) >= mod) x -= mod;return *this;}ModInt &operator*=(const ModInt &p) {x = (int) (1LL * x * p.x % mod);return *this;}ModInt &operator/=(const ModInt &p) {*this *= p.inverse();return *this;}ModInt operator-() const { return ModInt(-x); }ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }bool operator==(const ModInt &p) const { return x == p.x; }bool operator!=(const ModInt &p) const { return x != p.x; }ModInt inverse() const {int a = x, b = mod, u = 1, v = 0, t;while(b > 0) {t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return ModInt(u);}ModInt pow(int64_t n) const {ModInt ret(1), mul(x);while(n > 0) {if(n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}friend ostream &operator<<(ostream &os, const ModInt &p) {return os << p.x;}friend istream &operator>>(istream &is, ModInt &a) {int64_t t;is >> t;a = ModInt< mod >(t);return (is);}static int get_mod() { return mod; }};using modint = ModInt< 998244353 >;template< typename T >struct Combination {vector< T > _fact, _rfact, _inv;Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {_fact[0] = _rfact[sz] = _inv[0] = 1;for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;_rfact[sz] /= _fact[sz];for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];}inline T fact(int k) const { return _fact[k]; }inline T rfact(int k) const { return _rfact[k]; }inline T inv(int k) const { return _inv[k]; }T P(int n, int r) const {if(r < 0 || n < r) return 0;return fact(n) * rfact(n - r);}T C(int p, int q) const {if(q < 0 || p < q) return 0;return fact(p) * rfact(q) * rfact(p - q);}T H(int n, int r) const {if(n < 0 || r < 0) return (0);return r == 0 ? 1 : C(n + r - 1, r);}};ll modpow(ll x, ll n, ll mod) {ll res = 1;while(n) {if(n&1) res = (res * x) % mod;x = (x * x) % mod;n >>= 1;}return res;}inline long long mod(long long a, long long m) {return (a % m + m) % m;}struct HopcroftKarp {vector< vector< int > > graph;vector< int > dist, match;vector< bool > used, vv;HopcroftKarp(int n, int m) : graph(n), match(m, -1), used(n) {}void add_edge(int u, int v) {graph[u].push_back(v);}void bfs() {dist.assign(graph.size(), -1);queue< int > que;for(int i = 0; i < graph.size(); i++) {if(!used[i]) {que.emplace(i);dist[i] = 0;}}while(!que.empty()) {int a = que.front();que.pop();for(auto &b : graph[a]) {int c = match[b];if(c >= 0 && dist[c] == -1) {dist[c] = dist[a] + 1;que.emplace(c);}}}}bool dfs(int a) {vv[a] = true;for(auto &b : graph[a]) {int c = match[b];if(c < 0 || (!vv[c] && dist[c] == dist[a] + 1 && dfs(c))) {match[b] = a;used[a] = true;return (true);}}return (false);}int bipartite_matching() {int ret = 0;while(true) {bfs();vv.assign(graph.size(), false);int flow = 0;for(int i = 0; i < graph.size(); i++) {if(!used[i] && dfs(i)) ++flow;}if(flow == 0) return (ret);ret += flow;}}void output() {for(int i = 0; i < match.size(); i++) {if(~match[i]) {cout << match[i] << "-" << i << endl;}}}};int main(){cin.tie(0);ios::sync_with_stdio(false);cout << fixed << setprecision(20);int H, W; cin >> H >> W;vector<vector<int>> a(H, vector<int>(W,0));REP(i,H) REP(j,W) cin >> a[i][j];vector<int> v;v.push_back(0);REP(i,H) REP(j,W) v.push_back(a[i][j]);sort(all(v));v.erase(unique(all(v)), v.end());REP(i,H) REP(j,W) a[i][j] = lower_bound(all(v), a[i][j]) - v.begin();vector<vector<int>> g(v.size());REP(i,H) REP(j,W) {g[a[i][j]].push_back(i*W+j);}int ans = 0;for(int i=1; i<v.size(); i++) {HopcroftKarp bm(H, W);for(int j=0; j<g[i].size(); j++) {int y = g[i][j]/W, x = g[i][j]%W;bm.add_edge(y, x);}ans += bm.bipartite_matching();}cout << ans << endl;return 0;}