結果

問題 No.1479 Matrix Eraser
ユーザー mkawa2mkawa2
提出日時 2021-04-16 22:21:05
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,149 ms / 3,000 ms
コード長 6,210 bytes
コンパイル時間 433 ms
コンパイル使用メモリ 86,960 KB
実行使用メモリ 151,336 KB
最終ジャッジ日時 2023-09-16 01:12:16
合計ジャッジ時間 26,009 ms
ジャッジサーバーID
(参考情報)
judge15 / judge13
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 159 ms
77,952 KB
testcase_01 AC 164 ms
77,948 KB
testcase_02 AC 167 ms
77,628 KB
testcase_03 AC 162 ms
77,640 KB
testcase_04 AC 161 ms
78,008 KB
testcase_05 AC 162 ms
77,852 KB
testcase_06 AC 162 ms
77,628 KB
testcase_07 AC 333 ms
87,740 KB
testcase_08 AC 352 ms
94,044 KB
testcase_09 AC 503 ms
105,968 KB
testcase_10 AC 879 ms
119,336 KB
testcase_11 AC 544 ms
111,396 KB
testcase_12 AC 341 ms
89,484 KB
testcase_13 AC 363 ms
93,648 KB
testcase_14 AC 348 ms
89,944 KB
testcase_15 AC 179 ms
80,400 KB
testcase_16 AC 334 ms
91,100 KB
testcase_17 AC 1,149 ms
137,896 KB
testcase_18 AC 1,114 ms
138,156 KB
testcase_19 AC 1,082 ms
137,988 KB
testcase_20 AC 1,072 ms
138,036 KB
testcase_21 AC 1,112 ms
138,092 KB
testcase_22 AC 1,139 ms
138,064 KB
testcase_23 AC 1,107 ms
138,024 KB
testcase_24 AC 1,088 ms
138,060 KB
testcase_25 AC 1,105 ms
138,132 KB
testcase_26 AC 1,136 ms
138,272 KB
testcase_27 AC 629 ms
106,588 KB
testcase_28 AC 597 ms
107,240 KB
testcase_29 AC 613 ms
106,344 KB
testcase_30 AC 608 ms
106,996 KB
testcase_31 AC 588 ms
105,392 KB
testcase_32 AC 443 ms
144,220 KB
testcase_33 AC 472 ms
150,320 KB
testcase_34 AC 471 ms
148,380 KB
testcase_35 AC 471 ms
151,336 KB
testcase_36 AC 459 ms
147,844 KB
testcase_37 AC 180 ms
80,932 KB
testcase_38 AC 582 ms
112,504 KB
testcase_39 AC 277 ms
142,168 KB
testcase_40 AC 155 ms
77,956 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys

# sys.setrecursionlimit(10**6)
int1 = lambda x: int(x)-1
p2D = lambda x: print(*x, sep="\n")
def II(): return int(sys.stdin.buffer.readline())
def FI(): return float(sys.stdin.buffer.readline())
def LI(): return list(map(int, sys.stdin.buffer.readline().split()))
def LI1(): return list(map(int1, sys.stdin.buffer.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def BI(): return sys.stdin.buffer.readline().rstrip()
def SI(): return sys.stdin.buffer.readline().rstrip().decode()
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
dij = [(0, 1), (1, 0), (1, 1), (1, -1)]
inf = 10**16
md = 998244353
# md = 10**9+7

from collections import defaultdict
from typing import NamedTuple, Optional, List, cast

class MFGraph:
    class Edge(NamedTuple):
        src: int
        dst: int
        cap: int
        flow: int

    class _Edge:
        def __init__(self, dst: int, cap: int) -> None:
            self.dst = dst
            self.cap = cap
            self.rev: Optional[MFGraph._Edge] = None

    def __init__(self, n: int) -> None:
        self._n = n
        self._g: List[List[MFGraph._Edge]] = [[] for _ in range(n)]
        self._edges: List[MFGraph._Edge] = []

    def add_edge(self, src: int, dst: int, cap: int) -> int:
        assert 0 <= src < self._n
        assert 0 <= dst < self._n
        assert 0 <= cap
        m = len(self._edges)
        e = MFGraph._Edge(dst, cap)
        re = MFGraph._Edge(src, 0)
        e.rev = re
        re.rev = e
        self._g[src].append(e)
        self._g[dst].append(re)
        self._edges.append(e)
        return m

    def add_undir_edge(self, src: int, dst: int, cap: int) -> int:
        assert 0 <= src < self._n
        assert 0 <= dst < self._n
        assert 0 <= cap
        m = len(self._edges)
        e = MFGraph._Edge(dst, cap)
        re = MFGraph._Edge(src, cap)
        e.rev = re
        re.rev = e
        self._g[src].append(e)
        self._g[dst].append(re)
        self._edges.append(e)
        return m

    def get_edge(self, i: int) -> Edge:
        assert 0 <= i < len(self._edges)
        e = self._edges[i]
        re = cast(MFGraph._Edge, e.rev)
        return MFGraph.Edge(
            re.dst,
            e.dst,
            e.cap + re.cap,
            re.cap
        )

    def edges(self) -> List[Edge]:
        return [self.get_edge(i) for i in range(len(self._edges))]

    def change_edge(self, i: int, new_cap: int, new_flow: int) -> None:
        assert 0 <= i < len(self._edges)
        assert 0 <= new_flow <= new_cap
        e = self._edges[i]
        e.cap = new_cap - new_flow
        assert e.rev is not None
        e.rev.cap = new_flow

    def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> int:
        assert 0 <= s < self._n
        assert 0 <= t < self._n
        assert s != t
        if flow_limit is None:
            flow_limit = cast(int, sum(e.cap for e in self._g[s]))

        current_edge = [0] * self._n
        level = [0] * self._n

        def fill(arr: List[int], value: int) -> None:
            for i in range(len(arr)):
                arr[i] = value

        def bfs() -> bool:
            fill(level, self._n)
            queue = []
            q_front = 0
            queue.append(s)
            level[s] = 0
            while q_front < len(queue):
                v = queue[q_front]
                q_front += 1
                next_level = level[v] + 1
                for e in self._g[v]:
                    if e.cap == 0 or level[e.dst] <= next_level:
                        continue
                    level[e.dst] = next_level
                    if e.dst == t:
                        return True
                    queue.append(e.dst)
            return False

        def dfs(lim: int) -> int:
            stack = []
            edge_stack: List[MFGraph._Edge] = []
            stack.append(t)
            while stack:
                v = stack[-1]
                if v == s:
                    flow = min(lim, min(e.cap for e in edge_stack))
                    for e in edge_stack:
                        e.cap -= flow
                        assert e.rev is not None
                        e.rev.cap += flow
                    return flow
                next_level = level[v] - 1
                while current_edge[v] < len(self._g[v]):
                    e = self._g[v][current_edge[v]]
                    re = cast(MFGraph._Edge, e.rev)
                    if level[e.dst] != next_level or re.cap == 0:
                        current_edge[v] += 1
                        continue
                    stack.append(e.dst)
                    edge_stack.append(re)
                    break
                else:
                    stack.pop()
                    if edge_stack:
                        edge_stack.pop()
                    level[v] = self._n
            return 0

        flow = 0
        while flow < flow_limit:
            if not bfs():
                break
            fill(current_edge, 0)
            while flow < flow_limit:
                f = dfs(flow_limit - flow)
                flow += f
                if f == 0:
                    break
        return flow

    def min_cut(self, s: int) -> List[bool]:
        visited = [False] * self._n
        stack = [s]
        visited[s] = True
        while stack:
            v = stack.pop()
            for e in self._g[v]:
                if e.cap > 0 and not visited[e.dst]:
                    visited[e.dst] = True
                    stack.append(e.dst)
        return visited

h,w=LI()
aa=LLI(h)
atoij=defaultdict(list)
for i in range(h):
    for j in range(w):
        a=aa[i][j]
        if a==0:continue
        atoij[a].append((i,j))

ans=0
s=h+w
t=h+w+1
for a,ij in atoij.items():
    if len(ij)==1:
        ans+=1
        continue
    mf=MFGraph(h+w+2)
    ii,jj=set(),set()
    for i,j in ij:
        mf.add_edge(i,h+j,inf)
        ii.add(i)
        jj.add(j)
    for i in ii:mf.add_edge(s,i,1)
    for j in jj:mf.add_edge(h+j,t,1)
    ans+=mf.flow(s,t)

print(ans)
0