結果

問題 No.1482 Swap Many Permutations
ユーザー uwi
提出日時 2021-04-16 22:29:45
言語 Java
(openjdk 23)
結果
AC  
実行時間 1,514 ms / 2,000 ms
コード長 23,523 bytes
コンパイル時間 5,477 ms
コンパイル使用メモリ 94,020 KB
実行使用メモリ 90,452 KB
最終ジャッジ日時 2024-07-03 02:37:20
合計ジャッジ時間 43,291 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 45
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

package contest210416;
import java.io.*;
import java.util.*;
import java.util.function.IntUnaryOperator;
import java.util.function.LongUnaryOperator;
public class G3 {
InputStream is;
FastWriter out;
String INPUT = "";
int M;
public void solve()
{
int n = ni();
this.M = ni();
int[] bs = new int[n];
int[] cs = new int[n];
for(int i = 0;i < n;i++){
bs[i] = ni();
cs[i] = ni();
}
final int mod = 998244353;
int[][] fif = enumFIF(100000, mod);
if(M == 2){
int bsum = 0;
for(int i = 1;i <= n;i++){
bsum ^= bs[i-1];
if(i == 1){
out.println(1);
}else if(i == 2){
out.println(bsum*2);
}else{
out.println(0);
}
}
return;
}
// long[] le = new long[Math.max(M+1, n+1)];
// for(int i = 0;i <= M;i++){
// le[i] = (long)fif[1][i] * fif[0][M] % mod * fif[1][M-i] % mod;
// }
long[] lo = new long[Math.max(M+1, n+1)];
for(int i = 0;i <= M;i++){
if(i % 2 == 0) {
lo[i] = (long) fif[1][i] * fif[0][M] % mod * fif[1][M - i] % mod;
}else{
lo[i] = mod - (long) fif[1][i] * fif[0][M] % mod * fif[1][M - i] % mod;
}
}
long[] plus = new long[n+1];
long num = 1;
for(int i = 0;i < n+1;i++){
plus[i] = num;
num = num * ((long)M*(M-1)-i) % mod * invl(i+1, mod) % mod;
}
num = 1;
long[] minus = new long[n+1];
for(int i = 0;i < n+1;i++){
minus[i] = num;
num = num * ((long)M*(M-1)/2-i) % mod * invl(i+1, mod) % mod;
}
minus = mul(minus, pow(lo, (M-1)/2), n+1);
int[] primes = sieveEratosthenes(100000);
int pr = primitiveRoot(M, primes, new Random());
int[] es = new int[M];
long cur = 1;
for(int i = 0;i < M-1;i++){
es[(int)cur] = i % 2;
cur = cur * pr % M;
}
int par = 0;
for(int i = 1;i <= n;i++){
par ^= es[cs[i-1]];
if(i == 1){
out.println(1);
continue;
}else if(i == 2){
if(bs[0] == bs[1] && cs[0] == cs[1]){
out.println(0);
}else{
out.println((long)M*(M-1)%mod);
}
continue;
}
if(par == 0){
out.println((plus[i]+minus[i]) * fif[0][i] % mod * invl(2, mod) % mod);
}else{
out.println((plus[i]-minus[i]+mod) * fif[0][i] % mod * invl(2, mod) % mod);
}
// out.println((plus[i]+minus[i]) % mod * i % mod);
}
}
public static int primitiveRoot(int p, int[] primes, Random gen)
{
int[] fs = new int[10];
int fp = 0;
int pm = p-1;
for(int q : primes){
if(q*q > pm)break;
if(pm % q == 0)fs[fp++] = (p-1)/q;
while(pm % q == 0)pm /= q;
}
if(pm > 1)fs[fp++] = (p-1)/pm;
outer:
while(true){
int g = gen.nextInt(p-1)+1;
for(int i = 0;i < fp;i++){
if(pow(g, fs[i], p) == 1)continue outer;
}
return g;
}
}
public static int[] sieveEratosthenes(int n) {
if (n <= 32) {
int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31};
for (int i = 0; i < primes.length; i++) {
if (n < primes[i]) {
return Arrays.copyOf(primes, i);
}
}
return primes;
}
int u = n + 32;
double lu = Math.log(u);
int[] ret = new int[(int) (u / lu + u / lu / lu * 1.5)];
ret[0] = 2;
int pos = 1;
int[] isnp = new int[(n + 1) / 32 / 2 + 1];
int sup = (n + 1) / 32 / 2 + 1;
int[] tprimes = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31};
for (int tp : tprimes) {
ret[pos++] = tp;
int[] ptn = new int[tp];
for (int i = (tp - 3) / 2; i < tp << 5; i += tp) ptn[i >> 5] |= 1 << (i & 31);
for (int j = 0; j < sup; j += tp) {
for (int i = 0; i < tp && i + j < sup; i++) {
isnp[j + i] |= ptn[i];
}
}
}
// 3,5,7
// 2x+3=n
int[] magic = {0, 1, 23, 2, 29, 24, 19, 3, 30, 27, 25, 11, 20, 8, 4, 13, 31, 22, 28, 18, 26, 10, 7, 12, 21, 17, 9, 6, 16, 5, 15, 14};
int h = n / 2;
for (int i = 0; i < sup; i++) {
for (int j = ~isnp[i]; j != 0; j &= j - 1) {
int pp = i << 5 | magic[(j & -j) * 0x076be629 >>> 27];
int p = 2 * pp + 3;
if (p > n) break;
ret[pos++] = p;
if ((long) p * p > n) continue;
for (int q = (p * p - 3) / 2; q <= h; q += p) isnp[q >> 5] |= 1 << q;
}
}
return Arrays.copyOf(ret, pos);
}
public static int trailingZeros(long[] a)
{
int ret = 0;
for(long v : a) {
if(v == 0) {
ret++;
}else {
break;
}
}
return ret;
}
public static long[] pow(long[] p, long K)
{
int n = p.length;
int tz = trailingZeros(p);
if((long)tz*K >= n)return new long[n];
long[] pa = Arrays.copyOfRange(p, tz, n);
int m = pa.length;
// pa[0] must be 1
long base = pa[0];
long scale = invl(base, mod);
for(int i = 0;i < m;i++)pa[i] = pa[i] * scale % mod;
long[] lnp = Arrays.copyOf(ln(pa), m);
for(int i = 0;i < m;i++)lnp[i] = lnp[i] * K % mod;
long[] reta = exp(lnp);
long kscale = pow(base, K, mod);
for(int i = 0;i < m;i++)reta[i] = reta[i] * kscale % mod;
long[] ret = new long[n];
System.arraycopy(reta, 0, ret, (int)(tz*K), (int)(n-tz*K));
return ret;
}
public static long invl(long a, long mod) {
long b = mod;
long p = 1, q = 0;
while (b > 0) {
long c = a / b;
long d;
d = a;
a = b;
b = d % b;
d = p;
p = q;
q = d - c * q;
}
return p < 0 ? p + mod : p;
}
public static long[] mul_(long[] a, long k)
{
for(int i = 0;i < a.length;i++)a[i] = a[i] * k % mod;
return a;
}
public static long[] mul(long[] a, long k)
{
a = Arrays.copyOf(a, a.length);
for(int i = 0;i < a.length;i++)a[i] = a[i] * k % mod;
return a;
}
public static long[] add(long[] a, long[] b)
{
long[] c = new long[Math.max(a.length, b.length)];
for(int i = 0;i < a.length;i++)c[i] += a[i];
for(int i = 0;i < b.length;i++)c[i] += b[i];
for(int i = 0;i < c.length;i++)if(c[i] >= mod)c[i] -= mod;
return c;
}
public static long[] add(long[] a, long[] b, int lim)
{
long[] c = new long[lim];
for(int i = 0;i < a.length && i < lim;i++)c[i] += a[i];
for(int i = 0;i < b.length && i < lim;i++)c[i] += b[i];
for(int i = 0;i < c.length;i++)if(c[i] >= mod)c[i] -= mod;
return c;
}
public static long[] sub(long[] a, long[] b)
{
long[] c = new long[Math.max(a.length, b.length)];
for(int i = 0;i < a.length;i++)c[i] += a[i];
for(int i = 0;i < b.length;i++)c[i] -= b[i];
for(int i = 0;i < c.length;i++)if(c[i] < 0)c[i] += mod;
return c;
}
public static long[] sub(long[] a, long[] b, int lim)
{
long[] c = new long[lim];
for(int i = 0;i < a.length && i < lim;i++)c[i] += a[i];
for(int i = 0;i < b.length && i < lim;i++)c[i] -= b[i];
for(int i = 0;i < c.length;i++)if(c[i] < 0)c[i] += mod;
return c;
}
// F_{t+1}(x) = -F_t(x)^2*P(x) + 2F_t(x)
// if want p-destructive, comment out flipping p just before returning.
public static long[] inv(long[] p)
{
int n = p.length;
long[] f = {invl(p[0], mod)};
for(int i = 0;i < p.length;i++){
if(p[i] == 0)continue;
p[i] = mod-p[i];
}
for(int i = 1;i < 2*n;i*=2){
long[] f2 = mul(f, f, Math.min(n, 2*i));
long[] f2p = mul(f2, Arrays.copyOf(p, i), Math.min(n, 2*i));
for(int j = 0;j < f.length;j++){
f2p[j] += 2L*f[j];
if(f2p[j] >= mod)f2p[j] -= mod;
if(f2p[j] >= mod)f2p[j] -= mod;
}
f = f2p;
}
for(int i = 0;i < p.length;i++){
if(p[i] == 0)continue;
p[i] = mod-p[i];
}
return f;
}
// differentiate
public static long[] d(long[] p)
{
long[] q = new long[p.length];
for(int i = 0;i < p.length-1;i++){
q[i] = p[i+1] * (i+1) % mod;
}
return q;
}
// integrate
public static long[] i(long[] p)
{
long[] q = new long[p.length];
for(int i = 0;i < p.length-1;i++){
q[i+1] = p[i] * invl(i+1, mod) % mod;
}
return q;
}
public static long[] ln(long[] f)
{
return i(mul(d(f), inv(f)));
}
public static long pow(long a, long n, long mod) {
// a %= mod;
long ret = 1;
int x = 63 - Long.numberOfLeadingZeros(n);
for (; x >= 0; x--) {
ret = ret * ret % mod;
if (n << 63 - x < 0) ret = ret * a % mod;
}
return ret;
}
static long[] exp(long[] a) { return exp(a, a.length); }
/**
* https://cs.uwaterloo.ca/~eschost/publications/BoSc09-final.pdf
* @verified https://judge.yosupo.jp/problem/exp_of_formal_power_series
* @param a
* @param lim
* @return
*/
static long[] exp(long[] a, int lim)
{
long[] F = {1L};
long[] G = {1L};
long[] da = d(a);
for(int m = 1;;m *= 2) {
long[] G2 = mul(G, G, m);
G = sub(mul_(G, 2), mul(F, G2, m));
long[] Q = Arrays.copyOf(da, m-1);
long[] W = add(Q, mul(G, sub(d(F), mul(F, Q, m), m-1)));
F = mul(F, add(new long[] {1}, sub(Arrays.copyOf(a, m), i(W))), m);
if(m >= lim)break;
}
return Arrays.copyOf(F, lim);
}
public static final int mod = 998244353;
public static final int G = 3;
// only 998244353
public static long[] mul(long[] a, long[] b)
{
return Arrays.copyOf(NTTStockham998244353.convolute(a, b), a.length+b.length-1);
}
public static long[] mul(long[] a, long[] b, int lim)
{
return Arrays.copyOf(NTTStockham998244353.convolute(a, b), lim);
}
public static class NTTStockham998244353 {
private static final int P = 998244353, mod = P, G = 3;
private static long[] wps;
public static long[] convolute(long[] a, long[] b)
{
int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
wps = new long[m];
long unit = pow(G, (P-1)/m);
wps[0] = 1;
for(int p = 1;p < m;p++) {
wps[p] = wps[p-1] * unit % mod;
}
long[] fa = go(a, m, false);
long[] fb = a == b ? fa : go(b, m, false);
for(int i = 0;i < m;i++){
fa[i] = fa[i]*fb[i] % mod;
}
fa = go(fa, m, true);
for(int i = 1, j = m-1;i < j;i++,j--) {
long d = fa[i]; fa[i] = fa[j]; fa[j] = d;
}
return fa;
}
private static void fft(long[] X, long[] Y)
{
int s = 1;
boolean eo = false;
for(int n = X.length;n >= 4;n /= 2) {
int m = n/2;
for(int p = 0;p < m;p++) {
long wp = wps[s*p];
long wk = (wp<<32)/P;
for(int q = 0;q < s;q++) {
long a = X[q + s*(p+0)];
long b = X[q + s*(p+m)];
long ndsts = a + b;
if(ndsts >= 2*P)ndsts -= 2*P;
long T = a - b + 2*P;
long Q = wk*T>>>32;
Y[q + s*(2*p+0)] = ndsts;
Y[q + s*(2*p+1)] = wp*T-Q*P&(1L<<32)-1;
}
}
s *= 2;
eo = !eo;
long[] D = X; X = Y; Y = D;
}
long[] z = eo ? Y : X;
for(int q = 0;q < s;q++) {
long a = X[q + 0];
long b = X[q + s];
z[q+0] = (a+b) % P;
z[q+s] = (a-b+2*P) % P;
}
}
// private static void fft(long[] X, long[] Y)
// {
// int s = 1;
// boolean eo = false;
// for(int n = X.length;n >= 4;n /= 2) {
// int m = n/2;
// for(int p = 0;p < m;p++) {
// long wp = wps[s*p];
// for(int q = 0;q < s;q++) {
// long a = X[q + s*(p+0)];
// long b = X[q + s*(p+m)];
// Y[q + s*(2*p+0)] = (a+b) % P;
// Y[q + s*(2*p+1)] = (a-b+P) * wp % P;
// }
// }
// s *= 2;
// eo = !eo;
// long[] D = X; X = Y; Y = D;
// }
// long[] z = eo ? Y : X;
// for(int q = 0;q < s;q++) {
// long a = X[q + 0];
// long b = X[q + s];
// z[q+0] = (a+b) % P;
// z[q+s] = (a-b+P) % P;
// }
// }
private static long[] go(long[] src, int n, boolean inverse)
{
long[] dst = Arrays.copyOf(src, n);
fft(dst, new long[n]);
if(inverse){
long in = invl(n);
for(int i = 0;i < n;i++){
dst[i] = dst[i] * in % mod;
}
}
return dst;
}
private static long pow(long a, long n) {
// a %= mod;
long ret = 1;
int x = 63 - Long.numberOfLeadingZeros(n);
for (; x >= 0; x--) {
ret = ret*ret % mod;
if (n<<~x<0)ret = ret*a%mod;
}
return ret;
}
private static long invl(long a) {
long b = mod;
long p = 1, q = 0;
while (b > 0) {
long c = a / b;
long d;
d = a;
a = b;
b = d % b;
d = p;
p = q;
q = d - c * q;
}
return p < 0 ? p + mod : p;
}
}
public static long C(int n, int r, int mod, int[][] fif) {
if (n < 0 || r < 0 || r > n) return 0;
return (long) fif[0][n] * fif[1][r] % mod * fif[1][n - r] % mod;
}
public static int[][] enumFIF(int n, int mod) {
int[] f = new int[n + 1];
int[] invf = new int[n + 1];
f[0] = 1;
for (int i = 1; i <= n; i++) {
f[i] = (int) ((long) f[i - 1] * i % mod);
}
long a = f[n];
long b = mod;
long p = 1, q = 0;
while (b > 0) {
long c = a / b;
long d;
d = a;
a = b;
b = d % b;
d = p;
p = q;
q = d - c * q;
}
invf[n] = (int) (p < 0 ? p + mod : p);
for (int i = n - 1; i >= 0; i--) {
invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod);
}
return new int[][]{f, invf};
}
public static void main(String[] args) {
new G3().run();
}
public void run()
{
long S = System.currentTimeMillis();
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new FastWriter(System.out);
solve();
out.flush();
long G = System.currentTimeMillis();
tr(G-S+"ms");
// Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){
// @Override
// public void run() {
// long s = System.currentTimeMillis();
// solve();
// out.flush();
// if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
// }
// };
// t.start();
// t.join();
}
private boolean eof()
{
if(lenbuf == -1)return true;
int lptr = ptrbuf;
while(lptr < lenbuf)if(!isSpaceChar(inbuf[lptr++]))return false;
try {
is.mark(1000);
while(true){
int b = is.read();
if(b == -1){
is.reset();
return true;
}else if(!isSpaceChar(b)){
is.reset();
return false;
}
}
} catch (IOException e) {
return true;
}
}
private final byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
// private boolean isSpaceChar(int c) { return !(c >= 32 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private long[] nal(int n)
{
long[] a = new long[n];
for(int i = 0;i < n;i++)a[i] = nl();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
public static class FastWriter
{
private static final int BUF_SIZE = 1<<13;
private final byte[] buf = new byte[BUF_SIZE];
private final OutputStream out;
private int ptr = 0;
private FastWriter(){out = null;}
public FastWriter(OutputStream os)
{
this.out = os;
}
public FastWriter(String path)
{
try {
this.out = new FileOutputStream(path);
} catch (FileNotFoundException e) {
throw new RuntimeException("FastWriter");
}
}
public FastWriter write(byte b)
{
buf[ptr++] = b;
if(ptr == BUF_SIZE)innerflush();
return this;
}
public FastWriter write(char c)
{
return write((byte)c);
}
public FastWriter write(char[] s)
{
for(char c : s){
buf[ptr++] = (byte)c;
if(ptr == BUF_SIZE)innerflush();
}
return this;
}
public FastWriter write(String s)
{
s.chars().forEach(c -> {
buf[ptr++] = (byte)c;
if(ptr == BUF_SIZE)innerflush();
});
return this;
}
private static int countDigits(int l) {
if (l >= 1000000000) return 10;
if (l >= 100000000) return 9;
if (l >= 10000000) return 8;
if (l >= 1000000) return 7;
if (l >= 100000) return 6;
if (l >= 10000) return 5;
if (l >= 1000) return 4;
if (l >= 100) return 3;
if (l >= 10) return 2;
return 1;
}
public FastWriter write(int x)
{
if(x == Integer.MIN_VALUE){
return write((long)x);
}
if(ptr + 12 >= BUF_SIZE)innerflush();
if(x < 0){
write((byte)'-');
x = -x;
}
int d = countDigits(x);
for(int i = ptr + d - 1;i >= ptr;i--){
buf[i] = (byte)('0'+x%10);
x /= 10;
}
ptr += d;
return this;
}
private static int countDigits(long l) {
if (l >= 1000000000000000000L) return 19;
if (l >= 100000000000000000L) return 18;
if (l >= 10000000000000000L) return 17;
if (l >= 1000000000000000L) return 16;
if (l >= 100000000000000L) return 15;
if (l >= 10000000000000L) return 14;
if (l >= 1000000000000L) return 13;
if (l >= 100000000000L) return 12;
if (l >= 10000000000L) return 11;
if (l >= 1000000000L) return 10;
if (l >= 100000000L) return 9;
if (l >= 10000000L) return 8;
if (l >= 1000000L) return 7;
if (l >= 100000L) return 6;
if (l >= 10000L) return 5;
if (l >= 1000L) return 4;
if (l >= 100L) return 3;
if (l >= 10L) return 2;
return 1;
}
public FastWriter write(long x)
{
if(x == Long.MIN_VALUE){
return write("" + x);
}
if(ptr + 21 >= BUF_SIZE)innerflush();
if(x < 0){
write((byte)'-');
x = -x;
}
int d = countDigits(x);
for(int i = ptr + d - 1;i >= ptr;i--){
buf[i] = (byte)('0'+x%10);
x /= 10;
}
ptr += d;
return this;
}
public FastWriter write(double x, int precision)
{
if(x < 0){
write('-');
x = -x;
}
x += Math.pow(10, -precision)/2;
// if(x < 0){ x = 0; }
write((long)x).write(".");
x -= (long)x;
for(int i = 0;i < precision;i++){
x *= 10;
write((char)('0'+(int)x));
x -= (int)x;
}
return this;
}
public FastWriter writeln(char c){ return write(c).writeln(); }
public FastWriter writeln(int x){ return write(x).writeln(); }
public FastWriter writeln(long x){ return write(x).writeln(); }
public FastWriter writeln(double x, int precision){ return write(x, precision).writeln(); }
public FastWriter write(int... xs)
{
boolean first = true;
for(int x : xs) {
if (!first) write(' ');
first = false;
write(x);
}
return this;
}
public FastWriter write(long... xs)
{
boolean first = true;
for(long x : xs) {
if (!first) write(' ');
first = false;
write(x);
}
return this;
}
public FastWriter write(IntUnaryOperator f, int... xs)
{
boolean first = true;
for(int x : xs) {
if (!first) write(' ');
first = false;
write(f.applyAsInt(x));
}
return this;
}
public FastWriter write(LongUnaryOperator f, long... xs)
{
boolean first = true;
for(long x : xs) {
if (!first) write(' ');
first = false;
write(f.applyAsLong(x));
}
return this;
}
public FastWriter writeln()
{
return write((byte)'\n');
}
public FastWriter writeln(int... xs) { return write(xs).writeln(); }
public FastWriter writeln(long... xs) { return write(xs).writeln(); }
public FastWriter writeln(IntUnaryOperator f, int... xs) { return write(f, xs).writeln(); }
public FastWriter writeln(LongUnaryOperator f, long... xs) { return write(f, xs).writeln(); }
public FastWriter writeln(char[] line) { return write(line).writeln(); }
public FastWriter writeln(char[]... map) { for(char[] line : map)write(line).writeln();return this; }
public FastWriter writeln(String s) { return write(s).writeln(); }
private void innerflush()
{
try {
out.write(buf, 0, ptr);
ptr = 0;
} catch (IOException e) {
throw new RuntimeException("innerflush");
}
}
public void flush()
{
innerflush();
try {
out.flush();
} catch (IOException e) {
throw new RuntimeException("flush");
}
}
public FastWriter print(byte b) { return write(b); }
public FastWriter print(char c) { return write(c); }
public FastWriter print(char[] s) { return write(s); }
public FastWriter print(String s) { return write(s); }
public FastWriter print(int x) { return write(x); }
public FastWriter print(long x) { return write(x); }
public FastWriter print(double x, int precision) { return write(x, precision); }
public FastWriter println(char c){ return writeln(c); }
public FastWriter println(int x){ return writeln(x); }
public FastWriter println(long x){ return writeln(x); }
public FastWriter println(double x, int precision){ return writeln(x, precision); }
public FastWriter print(int... xs) { return write(xs); }
public FastWriter print(long... xs) { return write(xs); }
public FastWriter print(IntUnaryOperator f, int... xs) { return write(f, xs); }
public FastWriter print(LongUnaryOperator f, long... xs) { return write(f, xs); }
public FastWriter println(int... xs) { return writeln(xs); }
public FastWriter println(long... xs) { return writeln(xs); }
public FastWriter println(IntUnaryOperator f, int... xs) { return writeln(f, xs); }
public FastWriter println(LongUnaryOperator f, long... xs) { return writeln(f, xs); }
public FastWriter println(char[] line) { return writeln(line); }
public FastWriter println(char[]... map) { return writeln(map); }
public FastWriter println(String s) { return writeln(s); }
public FastWriter println() { return writeln(); }
}
public static void trnz(int... o)
{
for(int i = 0;i < o.length;i++)if(o[i] != 0)System.out.print(i+":"+o[i]+" ");
System.out.println();
}
// print ids which are 1
public static void trt(long... o)
{
Queue<Integer> stands = new ArrayDeque<>();
for(int i = 0;i < o.length;i++){
for(long x = o[i];x != 0;x &= x-1)stands.add(i<<6|Long.numberOfTrailingZeros(x));
}
System.out.println(stands);
}
public static void tf(boolean... r)
{
for(boolean x : r)System.out.print(x?'#':'.');
System.out.println();
}
public static void tf(boolean[]... b)
{
for(boolean[] r : b) {
for(boolean x : r)System.out.print(x?'#':'.');
System.out.println();
}
System.out.println();
}
public void tf(long[]... b)
{
if(INPUT.length() != 0) {
for (long[] r : b) {
for (long x : r) {
for (int i = 0; i < 64; i++) {
System.out.print(x << ~i < 0 ? '#' : '.');
}
}
System.out.println();
}
System.out.println();
}
}
public void tf(long... b)
{
if(INPUT.length() != 0) {
for (long x : b) {
for (int i = 0; i < 64; i++) {
System.out.print(x << ~i < 0 ? '#' : '.');
}
}
System.out.println();
}
}
private void tr(Object... o) { if(INPUT.length() != 0)System.out.println(Arrays.deepToString(o)); }
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0