結果

問題 No.1480 Many Complete Graphs
ユーザー hotman78hotman78
提出日時 2021-04-16 22:33:43
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 9,066 bytes
コンパイル時間 4,477 ms
コンパイル使用メモリ 255,988 KB
実行使用メモリ 25,572 KB
最終ジャッジ日時 2024-07-03 04:16:46
合計ジャッジ時間 10,199 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 8 ms
10,880 KB
testcase_01 AC 8 ms
11,008 KB
testcase_02 AC 8 ms
11,008 KB
testcase_03 AC 8 ms
10,880 KB
testcase_04 AC 8 ms
11,008 KB
testcase_05 AC 8 ms
10,880 KB
testcase_06 AC 8 ms
11,008 KB
testcase_07 AC 8 ms
10,880 KB
testcase_08 AC 9 ms
11,136 KB
testcase_09 AC 9 ms
11,136 KB
testcase_10 AC 9 ms
11,392 KB
testcase_11 AC 9 ms
11,136 KB
testcase_12 AC 8 ms
11,136 KB
testcase_13 AC 28 ms
17,408 KB
testcase_14 AC 22 ms
15,104 KB
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 AC 34 ms
16,000 KB
testcase_20 WA -
testcase_21 AC 30 ms
17,280 KB
testcase_22 AC 20 ms
14,464 KB
testcase_23 AC 58 ms
23,936 KB
testcase_24 AC 99 ms
23,168 KB
testcase_25 AC 117 ms
24,004 KB
testcase_26 AC 123 ms
24,796 KB
testcase_27 AC 103 ms
23,280 KB
testcase_28 AC 83 ms
25,568 KB
testcase_29 AC 86 ms
25,468 KB
testcase_30 AC 83 ms
24,960 KB
testcase_31 AC 83 ms
25,572 KB
testcase_32 AC 83 ms
25,568 KB
testcase_33 AC 84 ms
24,960 KB
testcase_34 AC 84 ms
25,572 KB
testcase_35 AC 81 ms
25,556 KB
testcase_36 AC 81 ms
24,960 KB
testcase_37 AC 81 ms
24,960 KB
testcase_38 AC 81 ms
25,552 KB
testcase_39 AC 81 ms
24,832 KB
testcase_40 AC 82 ms
25,552 KB
testcase_41 AC 82 ms
25,552 KB
testcase_42 AC 84 ms
25,444 KB
testcase_43 AC 83 ms
25,568 KB
testcase_44 AC 84 ms
25,564 KB
testcase_45 AC 85 ms
25,568 KB
testcase_46 AC 84 ms
25,572 KB
testcase_47 WA -
testcase_48 WA -
testcase_49 WA -
testcase_50 AC 66 ms
22,784 KB
testcase_51 AC 115 ms
23,168 KB
testcase_52 WA -
testcase_53 WA -
testcase_54 AC 108 ms
24,560 KB
testcase_55 AC 106 ms
24,696 KB
testcase_56 AC 106 ms
24,564 KB
testcase_57 AC 49 ms
20,096 KB
testcase_58 AC 72 ms
21,916 KB
evil_aftercontest.txt AC 143 ms
32,892 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "cpplib/util/template.hpp"
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx2")
#include<bits/stdc++.h>
using namespace std;
struct __INIT__{__INIT__(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}}__INIT__;
typedef long long lint;
#define INF (1LL<<60)
#define IINF (1<<30)
#define EPS (1e-10)
#define endl ('\n')
typedef vector<lint> vec;
typedef vector<vector<lint>> mat;
typedef vector<vector<vector<lint>>> mat3;
typedef vector<string> svec;
typedef vector<vector<string>> smat;
template<typename T>using V=vector<T>;
template<typename T>using VV=V<V<T>>;
template<typename T>inline void output(T t){bool f=0;for(auto i:t){cout<<(f?" ":"")<<i;f=1;}cout<<endl;}
template<typename T>inline void output2(T t){for(auto i:t)output(i);}
template<typename T>inline void debug(T t){bool f=0;for(auto i:t){cerr<<(f?" ":"")<<i;f=1;}cerr<<endl;}
template<typename T>inline void debug2(T t){for(auto i:t)debug(i);}
#define loop(n) for(long long _=0;_<(long long)(n);++_)
#define _overload4(_1,_2,_3,_4,name,...) name
#define __rep(i,a) repi(i,0,a,1)
#define _rep(i,a,b) repi(i,a,b,1)
#define repi(i,a,b,c) for(long long i=(long long)(a);i<(long long)(b);i+=c)
#define rep(...) _overload4(__VA_ARGS__,repi,_rep,__rep)(__VA_ARGS__)
#define _overload3_rev(_1,_2,_3,name,...) name
#define _rep_rev(i,a) repi_rev(i,0,a)
#define repi_rev(i,a,b) for(long long i=(long long)(b)-1;i>=(long long)(a);--i)
#define rrep(...) _overload3_rev(__VA_ARGS__,repi_rev,_rep_rev)(__VA_ARGS__)

// #define rep(i,...) for(auto i:range(__VA_ARGS__)) 
// #define rrep(i,...) for(auto i:reversed(range(__VA_ARGS__)))
// #define repi(i,a,b) for(lint i=lint(a);i<(lint)(b);++i)
// #define rrepi(i,a,b) for(lint i=lint(b)-1;i>=lint(a);--i)
// #define irep(i) for(lint i=0;;++i)
// inline vector<long long> range(long long n){if(n<=0)return vector<long long>();vector<long long>v(n);iota(v.begin(),v.end(),0LL);return v;}
// inline vector<long long> range(long long a,long long b){if(b<=a)return vector<long long>();vector<long long>v(b-a);iota(v.begin(),v.end(),a);return v;}
// inline vector<long long> range(long long a,long long b,long long c){if((b-a+c-1)/c<=0)return vector<long long>();vector<long long>v((b-a+c-1)/c);for(int i=0;i<(int)v.size();++i)v[i]=i?v[i-1]+c:a;return v;}
// template<typename T>inline T reversed(T v){reverse(v.begin(),v.end());return v;}
#define all(n) begin(n),end(n)
template<typename T,typename E>bool chmin(T& s,const E& t){bool res=s>t;s=min<T>(s,t);return res;}
template<typename T,typename E>bool chmax(T& s,const E& t){bool res=s<t;s=max<T>(s,t);return res;}
const vector<lint> dx={1,0,-1,0,1,1,-1,-1};
const vector<lint> dy={0,1,0,-1,1,-1,1,-1};
#define SUM(v) accumulate(all(v),0LL)
template<typename T,typename ...Args>auto make_vector(T x,int arg,Args ...args){if constexpr(sizeof...(args)==0)return vector<T>(arg,x);else return vector(arg,make_vector<T>(x,args...));}
#define extrep(v,...) for(auto v:__MAKE_MAT__({__VA_ARGS__}))
#define bit(n,a) ((n>>a)&1)
vector<vector<long long>> __MAKE_MAT__(vector<long long> v){if(v.empty())return vector<vector<long long>>(1,vector<long long>());long long n=v.back();v.pop_back();vector<vector<long long>> ret;vector<vector<long long>> tmp=__MAKE_MAT__(v);for(auto e:tmp)for(long long i=0;i<n;++i){ret.push_back(e);ret.back().push_back(i);}return ret;}
using graph=vector<vector<int>>;
template<typename T>using graph_w=vector<vector<pair<int,T>>>;
template<typename T,typename E>ostream& operator<<(ostream& out,pair<T,E>v){out<<"("<<v.first<<","<<v.second<<")";return out;}
constexpr inline long long powll(long long a,long long b){long long res=1;while(b--)res*=a;return res;}
#line 5 "cpplib/graph_tree/graph_template.hpp"
/**
 * @brief グラフテンプレート
 */

using graph=std::vector<std::vector<int>>;
template<typename T>
using graph_w=std::vector<std::vector<std::pair<int,T>>>;

graph load_graph(int n,int m){graph g(n);for(int i=0;i<m;++i){int s,t;std::cin>>s>>t;--s;--t;g[s].push_back(t);g[t].push_back(s);}return g;}
graph load_digraph(int n,int m){graph g(n);for(int i=0;i<m;++i){int s,t;std::cin>>s>>t;--s;--t;g[s].push_back(t);}return g;}
graph load_graph0(int n,int m){graph g(n);for(int i=0;i<m;++i){int s,t;std::cin>>s>>t;g[s].push_back(t);g[t].push_back(s);}return g;}
graph load_digraph0(int n,int m){graph g(n);for(int i=0;i<m;++i){int s,t;std::cin>>s>>t;g[s].push_back(t);}return g;}
graph load_tree(int n){graph g(n);for(int i=0;i<n-1;++i){int s,t;std::cin>>s>>t;--s;--t;g[s].push_back(t);g[t].push_back(s);}return g;}
graph load_tree0(int n){graph g(n);for(int i=0;i<n-1;++i){int s,t;std::cin>>s>>t;g[s].push_back(t);g[t].push_back(s);}return g;}
graph load_treep(int n){graph g(n);for(int i=0;i<n-1;++i){int t;std::cin>>t;g[i+1].push_back(t);g[t].push_back(i+1);}return g;}
template<typename T>graph_w<T> load_graph_weight(int n,int m){graph_w<T> g(n);for(int i=0;i<m;++i){int s,t;T u;std::cin>>s>>t>>u;--s;--t;g[s].emplace_back(t,u);g[t].emplace_back(s,u);}return g;}
template<typename T>graph_w<T> load_digraph_weight(int n,int m){graph_w<T> g(n);for(int i=0;i<m;++i){int s,t;T u;std::cin>>s>>t>>u;--s;--t;g[s].emplace_back(t,u);}return g;}
template<typename T>graph_w<T> load_graph0_weight(int n,int m){graph_w<T> g(n);for(int i=0;i<m;++i){int s,t;T u;std::cin>>s>>t>>u;g[s].emplace_back(t,u);g[t].emplace_back(s,u);}return g;}
template<typename T>graph_w<T> load_digraph0_weight(int n,int m){graph_w<T> g(n);for(int i=0;i<m;++i){int s,t;T u;std::cin>>s>>t>>u;g[s].emplace_back(t,u);}return g;}
template<typename T>graph_w<T> load_tree_weight(int n){graph_w<T> g(n);for(int i=0;i<n-1;++i){int s,t;T u;std::cin>>s>>t>>u;--s;--t;g[s].emplace_back(t,u);g[t].emplace_back(s,u);}return g;}
template<typename T>graph_w<T> load_tree0_weight(int n){graph_w<T> g(n);for(int i=0;i<n-1;++i){int s,t;T u;std::cin>>s>>t>>u;g[s].emplace_back(t,u);g[t].emplace_back(s,u);}return g;}
template<typename T>graph_w<T> load_treep_weight(int n){graph_w<T> g(n);for(int i=0;i<n-1;++i){int t;T u;std::cin>>t>>u;g[i+1].emplace_back(t,u);g[t].emplace_back(i+1,u);}return g;}
#line 10 "cpplib/graph_tree/dijkstra.hpp"
/**
 * @brief ダイクストラ法 O((E+V)logE)
 */

template<typename T,typename F=std::less<T>,typename Add=std::plus<T>>
struct dijkstra{
    int s;
    std::vector<T> diff;
    std::vector<int> par;
    std::vector<int>used;
    dijkstra(const graph_w<T>& list,int s,T zero=T(),T inf=std::numeric_limits<T>::max(),F f=F(),Add add=Add()):s(s){
        int n=list.size();
        diff.resize(n,inf);
        par.resize(n,-1);
        used.resize(n,0);
        std::priority_queue<std::pair<T,int>,std::vector<std::pair<T,int>>,std::greater<std::pair<T,int>>>que;
        diff[s]=zero;
        que.push(std::make_pair(T(),s));
        while(!que.empty()){
            auto d=que.top();
            que.pop();
            T x;
            int now;
            std::tie(x,now)=d;
            if(used[now])continue;
            used[now]=1;
            for(auto d2:list[now]){
                T sa;
                int to;
                std::tie(to,sa)=d2;
                T tmp=add(diff[now],sa);
                if(f(tmp,diff[to])){
                    diff[to]=tmp;
                    par[to]=now;
                    que.emplace(diff[to],to);
                }
            }
        }
    }
    vector<T> get(){
        return diff;
    }
    T operator[](int idx){
        return diff[idx];
    }
    bool reachable(int t){
        return par[t]!=-1;
    }
    std::vector<int> get_path(int t){
        std::vector<int>res;
        while(t!=s){
            res.push_back(t);
            t=par[t];
        }
        res.push_back(s);
        std::reverse(res.begin(),res.end());
        return res;
    }
};
#line 3 "code.cpp"
int main(){
    lint n,m;
    cin>>n>>m;
    graph_w<lint> v(n+200000);
    lint cnt=n;
    rep(i,m){
        lint k;
        cin>>k;
        vec a,b,d;
        lint c;
        cin>>c;
        rep(j,k){
            lint x;
            cin>>x;
            if(x%2)a.push_back(x);
            else b.push_back(x);
        }
        lint p=a.size(),q=b.size();
        if(p){
            rep(j,p-1){
                v[cnt+j].emplace_back(cnt+j+1,0);
            }
            rep(j,p){
                v[cnt+j].emplace_back(a[j]-1,a[j]/2);
            }
            rep(j,p){
                v[a[j]-1].emplace_back(cnt+j,a[j]/2+c+1);
            }
            rep(j,q){
                v[b[j]-1].emplace_back(cnt+j,b[j]/2+c+1);
            }
            cnt+=p;
        }
        if(q){
            rep(j,q-1){
                v[cnt+j].emplace_back(cnt+j+1,0);
            }
            rep(j,q){
                v[cnt+j].emplace_back(b[j]-1,b[j]/2);
            }
            rep(j,p){
                v[a[j]-1].emplace_back(cnt+j,a[j]/2+c+1);
            }
            rep(j,q){
                v[b[j]-1].emplace_back(cnt+j,b[j]/2+c);
            }
            cnt+=q;
        }
    }
    auto ans=dijkstra<lint>(v,0)[n-1];
    if(ans>=INF)cout<<-1<<endl;
    else cout<<ans<<endl;
}
0