結果

問題 No.1479 Matrix Eraser
ユーザー torisasami4
提出日時 2021-04-16 22:37:48
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 294 ms / 3,000 ms
コード長 8,316 bytes
コンパイル時間 2,658 ms
コンパイル使用メモリ 203,372 KB
実行使用メモリ 63,084 KB
最終ジャッジ日時 2024-07-03 02:50:08
合計ジャッジ時間 9,659 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 39
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pb(x) push_back(x)
#define mp(a, b) make_pair(a, b)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define lscan(x) scanf("%I64d", &x)
#define lprint(x) printf("%I64d", x)
#define rep(i, n) for (ll i = 0; i < (n); i++)
#define rep2(i, n) for (ll i = n - 1; i >= 0; i--)
#define REP(i, l, r) for (ll i = l; i < (r); i++)
template <class T>
using rque = priority_queue<T, vector<T>, greater<T>>;
const ll mod = 998244353;
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmax(T &a, const T &b) {
if (b > a) {
a = b;
return 1;
}
return 0;
}
ll gcd(ll a, ll b)
{
ll c = a % b;
while (c != 0)
{
a = b;
b = c;
c = a % b;
}
return b;
}
long long extGCD(long long a, long long b, long long &x, long long &y)
{
if (b == 0)
{
x = 1;
y = 0;
return a;
}
long long d = extGCD(b, a % b, y, x);
y -= a / b * x;
return d;
}
struct UnionFind
{
vector<ll> data;
UnionFind(int sz)
{
data.assign(sz, -1);
}
bool unite(int x, int y)
{
x = find(x), y = find(y);
if (x == y)
return (false);
if (data[x] > data[y])
swap(x, y);
data[x] += data[y];
data[y] = x;
return (true);
}
int find(int k)
{
if (data[k] < 0)
return (k);
return (data[k] = find(data[k]));
}
ll size(int k)
{
return (-data[find(k)]);
}
};
ll M = 1000000007;
vector<ll> fac(2000011, 0); //n!(mod M)
vector<ll> ifac(2000011); //k!^{M-2} (mod M)
ll mpow(ll x, ll n)
{
ll ans = 1;
while (n != 0)
{
if (n & 1)
ans = ans * x % M;
x = x * x % M;
n = n >> 1;
}
return ans;
}
ll mpow2(ll x, ll n, ll mod)
{
ll ans = 1;
while (n != 0)
{
if (n & 1)
ans = ans * x % mod;
x = x * x % mod;
n = n >> 1;
}
return ans;
}
void setcomb()
{
fac[0] = 1;
ifac[0] = 1;
for (ll i = 0; i < 2000010; i++)
{
fac[i + 1] = fac[i] * (i + 1) % M; // n!(mod M)
}
ifac[2000010] = mpow(fac[2000010], M - 2);
for (ll i = 2000010; i > 0; i--)
{
ifac[i - 1] = ifac[i] * i % M;
}
}
ll comb(ll a, ll b)
{
if(fac[0] == 0)
setcomb();
if (a == 0 && b == 0)
return 1;
if (a < b || a < 0)
return 0;
ll tmp = ifac[a - b] * ifac[b] % M;
return tmp * fac[a] % M;
}
ll perm(ll a, ll b)
{
if (a == 0 && b == 0)
return 1;
if (a < b || a < 0)
return 0;
return fac[a] * ifac[a - b] % M;
}
long long modinv(long long a)
{
long long b = M, u = 1, v = 0;
while (b)
{
long long t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= M;
if (u < 0)
u += M;
return u;
}
ll modinv2(ll a, ll mod)
{
ll b = mod, u = 1, v = 0;
while (b)
{
ll t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= mod;
if (u < 0)
u += mod;
return u;
}
template <int mod>
struct ModInt
{
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p)
{
if ((x += p.x) >= mod)
x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p)
{
if ((x += mod - p.x) >= mod)
x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p)
{
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p)
{
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const
{
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0)
{
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const
{
ModInt ret(1), mul(x);
while (n > 0)
{
if (n & 1)
ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p)
{
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a)
{
int64_t t;
is >> t;
a = ModInt<mod>(t);
return (is);
}
static int get_mod() { return mod; }
};
using mint = ModInt<mod>;
typedef vector<vector<mint>> Matrix;
Matrix mul(Matrix a, Matrix b)
{
assert(a[0].size() == b.size());
int i, j, k;
int n = a.size(), m = b[0].size(), l = a[0].size();
Matrix c(n, vector<mint>(m));
for (i = 0; i < n; i++)
for (k = 0; k < l; k++)
for (j = 0; j < m; j++)
c[i][j] += a[i][k] * b[k][j];
return c;
}
Matrix mat_pow(Matrix x, ll n)
{
ll k = x.size();
Matrix ans(k, vector<mint>(k, 0));
for (int i = 0; i < k; i++)
ans[i][i] = 1;
while (n != 0)
{
if (n & 1)
ans = mul(ans, x);
x = mul(x, x);
n = n >> 1;
}
return ans;
}
template< typename flow_t >
struct Dinic {
const flow_t INF;
struct edge {
int to;
flow_t cap;
int rev;
bool isrev;
int idx;
};
vector< vector< edge > > graph;
vector< int > min_cost, iter;
Dinic(int V) : INF(numeric_limits< flow_t >::max()), graph(V) {}
void add_edge(int from, int to, flow_t cap, int idx = -1) {
graph[from].emplace_back((edge) {to, cap, (int) graph[to].size(), false, idx});
graph[to].emplace_back((edge) {from, 0, (int) graph[from].size() - 1, true, idx});
}
bool bfs(int s, int t) {
min_cost.assign(graph.size(), -1);
queue< int > que;
min_cost[s] = 0;
que.push(s);
while(!que.empty() && min_cost[t] == -1) {
int p = que.front();
que.pop();
for(auto &e : graph[p]) {
if(e.cap > 0 && min_cost[e.to] == -1) {
min_cost[e.to] = min_cost[p] + 1;
que.push(e.to);
}
}
}
return min_cost[t] != -1;
}
flow_t dfs(int idx, const int t, flow_t flow) {
if(idx == t) return flow;
for(int &i = iter[idx]; i < graph[idx].size(); i++) {
edge &e = graph[idx][i];
if(e.cap > 0 && min_cost[idx] < min_cost[e.to]) {
flow_t d = dfs(e.to, t, min(flow, e.cap));
if(d > 0) {
e.cap -= d;
graph[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
flow_t max_flow(int s, int t) {
flow_t flow = 0;
while(bfs(s, t)) {
iter.assign(graph.size(), 0);
flow_t f = 0;
while((f = dfs(s, t, INF)) > 0) flow += f;
}
return flow;
}
vector<pair<pair<int,int>,int>> get_edges() {
vector<pair<pair<int,int>,int>> E;
for (int i = 0; i < graph.size(); i++)
{
for (auto &e : graph[i])
{
if (e.isrev)
continue;
auto &rev_e = graph[e.to][e.rev];
E.push_back(mp(mp(i, e.to), rev_e.cap));
}
}
return E;
}
void output()
{
for (int i = 0; i < graph.size(); i++)
{
for (auto &e : graph[i])
{
if (e.isrev)
continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl;
}
}
}
};
int main(){
ll h, w;
cin >> h >> w;
ll a;
vector<pair<ll, ll>> li[500001];
rep(i, h) rep(j, w) cin >> a, li[a].pb(mp(i, j));
ll ans = 0;
REP(i,1,500001){
if(li[i].size() == 0)
continue;
vector<ll> veci, vecj;
rep(j, li[i].size()) veci.pb(li[i][j].first), vecj.pb(li[i][j].second);
sort(all(veci)), sort(all(vecj));
map<ll, ll> mi, mj;
ll pi = 0, pj = 0;
rep(j,li[i].size()){
if(j == 0){
mi[veci[j]] = pi++;
mj[vecj[j]] = pj++;
}
else{
if(veci[j] != veci[j-1])
mi[veci[j]] = pi++;
if(vecj[j] != vecj[j-1])
mj[vecj[j]] = pj++;
}
}
rep(j, li[i].size()) li[i][j].first = mi[li[i][j].first], li[i][j].second = mj[li[i][j].second];
Dinic<ll> mf(pi + pj + 2);
rep(j, pi) mf.add_edge(pi + pj, j, 1);
rep(j, pj) mf.add_edge(pi + j, pi + pj + 1, 1);
rep(j, li[i].size()) mf.add_edge(li[i][j].first, pi + li[i][j].second, 1);
ans += mf.max_flow(pi + pj, pi + pj + 1);
}
cout << ans << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0