結果
| 問題 |
No.1480 Many Complete Graphs
|
| コンテスト | |
| ユーザー |
theory_and_me
|
| 提出日時 | 2021-04-16 23:00:45 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 116 ms / 2,000 ms |
| コード長 | 4,277 bytes |
| コンパイル時間 | 2,292 ms |
| コンパイル使用メモリ | 206,844 KB |
| 最終ジャッジ日時 | 2025-01-20 20:35:07 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 57 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define REP(i,n) for(ll i=0;i<(ll)n;i++)
#define dump(x) cerr << "Line " << __LINE__ << ": " << #x << " = " << (x) << "\n";
#define spa << " " <<
#define fi first
#define se second
#define ALL(a) (a).begin(),(a).end()
#define ALLR(a) (a).rbegin(),(a).rend()
using ld = long double;
using ll = long long;
using ull = unsigned long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pdd = pair<ld, ld>;
template<typename T> using V = vector<T>;
template<typename T> using P = pair<T, T>;
template<typename T> vector<T> make_vec(size_t n, T a) { return vector<T>(n, a); }
template<typename... Ts> auto make_vec(size_t n, Ts... ts) { return vector<decltype(make_vec(ts...))>(n, make_vec(ts...)); }
template<class S, class T> ostream& operator << (ostream& os, const pair<S, T> v){os << "(" << v.first << ", " << v.second << ")"; return os;}
template<typename T> ostream& operator<<(ostream &os, const vector<T> &v) { for (auto &e : v) os << e << ' '; return os; }
template<class T> ostream& operator<<(ostream& os, const vector<vector<T>> &v){ for(auto &e : v){os << e << "\n";} return os;}
struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
template <class T> void UNIQUE(vector<T> &x) {sort(ALL(x));x.erase(unique(ALL(x)), x.end());}
template<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }
void fail() { cout << -1 << '\n'; exit(0); }
inline int popcount(const int x) { return __builtin_popcount(x); }
inline int popcount(const ll x) { return __builtin_popcountll(x); }
template<typename T> void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++)
{cerr<<v[i][0];for(ll j=1;j<w;j++)cerr spa v[i][j];cerr<<"\n";}};
template<typename T> void debug(vector<T>&v,ll n){if(n!=0)cerr<<v[0];
for(ll i=1;i<n;i++)cerr spa v[i];
cerr<<"\n";};
const ll INF = (1ll<<62);
// const ld EPS = 1e-10;
// const ld PI = acos(-1.0);
const ll mod = (int)1e9 + 7;
//const ll mod = 998244353;
template< typename T >
struct edge {
int src, to;
T cost;
edge(int to, T cost) : src(-1), to(to), cost(cost) {}
edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
};
template< typename T >
using Edges = vector< edge< T > >;
template< typename T >
using WeightedGraph = vector< Edges< T > >;
using UnWeightedGraph = vector< vector< int > >;
template< typename T >
using Matrix = vector< vector< T > >;
template< typename T >
vector< T > Dijkstra(WeightedGraph< T > &g, int s) {
// const auto INF = numeric_limits< T >::max();
vector< T > dist(g.size(), INF);
using Pi = pair< T, int >;
priority_queue< Pi, vector< Pi >, greater< Pi > > que;
dist[s] = 0;
que.emplace(dist[s], s);
while(!que.empty()) {
T cost;
int idx;
tie(cost, idx) = que.top();
que.pop();
if(dist[idx] < cost) continue;
for(auto &e : g[idx]) {
auto next_cost = cost + e.cost;
if(dist[e.to] <= next_cost) continue;
dist[e.to] = next_cost;
que.emplace(dist[e.to], e.to);
}
}
return dist;
}
int main(){
ll N, M;
cin >> N >> M;
WeightedGraph<ll> G(N + 4*M);
auto add_edge = [&](ll x, ll y, ll w){
G[x].emplace_back(y, w);
G[y].emplace_back(x, w);
};
REP(i, M){
ll k, c;
cin >> k >> c;
V<ll> s(k);
REP(j, k) cin >> s[j], s[j]--;
ll p = N + 4 * i;
ll q = N + 4 * i + 1;
ll r = N + 4 * i + 2;
ll t = N + 4 * i + 3;
add_edge(p, q, c);
add_edge(p, t, c+1);
add_edge(r, q, c+1);
add_edge(r, t, c+1);
REP(j, k){
if((s[j]+1)%2 == 0){
G[s[j]].emplace_back(p, (s[j]+1)/2);
G[q].emplace_back(s[j], (s[j]+1)/2);
}else{
G[s[j]].emplace_back(r, (s[j]+1)/2);
G[t].emplace_back(s[j], (s[j]+1)/2);
}
}
}
auto dist = Dijkstra(G, 0);
cout << (dist[N-1] == INF ? -1 : dist[N-1]) << endl;
return 0;
}
theory_and_me