結果
問題 | No.900 aδδitivee |
ユーザー |
|
提出日時 | 2021-04-23 03:12:01 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 341 ms / 2,000 ms |
コード長 | 20,173 bytes |
コンパイル時間 | 4,067 ms |
コンパイル使用メモリ | 224,788 KB |
最終ジャッジ日時 | 2025-01-20 23:05:46 |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 27 |
ソースコード
#include <bits/stdc++.h>using namespace std;using ll = long long;#define ALL(obj) (obj).begin(),(obj).end()#define SPEED cin.tie(0);ios::sync_with_stdio(false);template<class T> using PQ = priority_queue<T>;template<class T> using PQR = priority_queue<T,vector<T>,greater<T>>;constexpr long long MOD = (long long)1e9 + 7;constexpr long long MOD2 = 998244353;constexpr long long HIGHINF = (long long)1e18;constexpr long long LOWINF = (long long)1e15;constexpr long double PI = 3.1415926535897932384626433L;template <class T> vector<T> multivector(size_t N,T init){return vector<T>(N,init);}template <class... T> auto multivector(size_t N,T... t){return vector<decltype(multivector(t...))>(N,multivector(t...));}template <class T> void corner(bool flg, T hoge) {if (flg) {cout << hoge << endl; exit(0);}}template <class T, class U>ostream &operator<<(ostream &o, const map<T, U>&obj) {o << "{"; for (auto &x : obj) o << " {" << x.first << " : " << x.second << "}" << ","; o << " }"; return o;}template <class T>ostream &operator<<(ostream &o, const set<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;}template <class T>ostream &operator<<(ostream &o, const multiset<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;}template <class T>ostream &operator<<(ostream &o, const vector<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "")<< obj[i]; o << "}"; return o;}template <class T, class U>ostream &operator<<(ostream &o, const pair<T, U>&obj) {o << "{" << obj.first << ", " << obj.second << "}"; return o;}template <template <class tmp> class T, class U> ostream &operator<<(ostream &o, const T<U> &obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr)o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;}void print(void) {cout << endl;}template <class Head> void print(Head&& head) {cout << head;print();}template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) {cout << head << " ";print(forward<Tail>(tail)...);}template <class T> void chmax(T& a, const T b){a=max(a,b);}template <class T> void chmin(T& a, const T b){a=min(a,b);}void YN(bool flg) {cout << (flg ? "YES" : "NO") << endl;}void Yn(bool flg) {cout << (flg ? "Yes" : "No") << endl;}void yn(bool flg) {cout << (flg ? "yes" : "no") << endl;}/** @title Graph* @docs md/graph/Graph.md*/template<class T> class Graph{private:const size_t N,H,W;public:vector<vector<pair<size_t,T>>> edges;Graph(const size_t N):H(-1),W(-1),N(N), edges(N) {}Graph(const size_t H, const size_t W):H(H),W(W),N(H*W), edges(H*W) {}inline void make_edge(size_t from, size_t to, T w) {edges[from].emplace_back(to,w);}//{from_y,from_x} -> {to_y,to_x}inline void make_edge(pair<size_t,size_t> from, pair<size_t,size_t> to, T w) {make_edge(from.first*W+from.second,to.first*W+to.second,w);}inline void make_bidirectional_edge(size_t from, size_t to, T w) {make_edge(from,to,w);make_edge(to,from,w);}inline void make_bidirectional_edge(pair<size_t,size_t> from, pair<size_t,size_t> to, T w) {make_edge(from.first*W+from.second,to.first*W+to.second,w);make_edge(to.first*W+to.second,from.first*W+from.second,w);}inline size_t size(){return N;}inline size_t idx(pair<size_t,size_t> yx){return yx.first*W+yx.second;}};/** @title Tree - 木* @docs md/graph/Tree.md*/template<class Operator> class TreeBuilder;template<class Operator> class Tree {using TypeEdge = typename Operator::TypeEdge;size_t num;size_t ord;Graph<TypeEdge>& g;friend TreeBuilder<Operator>;/*** constructor* O(N)*/Tree(Graph<TypeEdge>& graph):g(graph),num(graph.size()),depth(graph.size(),-1),order(graph.size()),edge_dist(graph.size()){}//for make_depthvoid dfs(int curr, int prev){for(const auto& e:g.edges[curr]){const int& next = e.first;if(next==prev) continue;depth[next] = depth[curr] + 1;edge_dist[next] = Operator::func_edge_merge(edge_dist[curr],e.second);dfs(next,curr);order[ord++] = next;}}//for make_eulertourvoid dfs(int from){eulertour.push_back(from);for(auto& e:child[from]){int to = e.first;dfs(to);eulertour.push_back(from);}}/*** 根付き木を作る* O(N) you can use anytime*/void make_root(const int root) {depth[root] = 0;edge_dist[root] = Operator::unit_edge;ord = 0;dfs(root,-1);order[ord++] = root;reverse_copy(order.begin(),order.end(),back_inserter(reorder));}/*** 根付き木を作る* O(N) you can use anytime*/void make_root() {ord = 0;for(int i=0;i<num;++i) {if(depth[i]!=-1) continue;depth[i] = 0;edge_dist[i] = Operator::unit_edge;dfs(i,-1);order[ord++] = i;}reverse_copy(order.begin(),order.end(),back_inserter(reorder));}/*** 子を作る* O(N) after make_root*/void make_child(const int root = 0) {child.resize(num);for (size_t i = 0; i < num; ++i) for (auto& e : g.edges[i]) if (depth[i] < depth[e.first]) child[i].push_back(e);}/*** 部分木のサイズを作る* O(N) after make_child*/void make_subtree_size() {subtree_size.resize(num,1);for (size_t i:order) for (auto e : child[i]) subtree_size[i] += subtree_size[e.first];}/*** 親を作る* O(N) after make_root*/void make_parent() {parent.resize(num,make_pair(num,Operator::unit_edge));for (size_t i = 0; i < num; ++i) for (auto& e : g.edges[i]) if (depth[i] > depth[e.first]) parent[i] = e;}void make_ancestor() {ancestor.resize(num);for (size_t i = 0; i < num; ++i) ancestor[i][0] = (parent[i].first!=num?parent[i]:make_pair(i,Operator::unit_lca_edge));for (size_t j = 1; j < Operator::bit; ++j) {for (size_t i = 0; i < num; ++i) {size_t k = ancestor[i][j - 1].first;ancestor[i][j] = Operator::func_lca_edge_merge(ancestor[k][j - 1],ancestor[i][j - 1]);}}}pair<size_t,TypeEdge> lca_impl(size_t l, size_t r) {if (depth[l] < depth[r]) swap(l, r);int diff = depth[l] - depth[r];auto ancl = make_pair(l,Operator::unit_lca_edge);auto ancr = make_pair(r,Operator::unit_lca_edge);for (int j = 0; j < Operator::bit; ++j) {if (diff & (1 << j)) ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][j],ancl);}if(ancl.first==ancr.first) return ancl;for (int j = Operator::bit - 1; 0 <= j; --j) {if(ancestor[ancl.first][j].first!=ancestor[ancr.first][j].first) {ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][j],ancl);ancr = Operator::func_lca_edge_merge(ancestor[ancr.first][j],ancr);}}ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][0],ancl);ancr = Operator::func_lca_edge_merge(ancestor[ancr.first][0],ancr);return Operator::func_lca_edge_merge(ancl,ancr);}pair<TypeEdge,vector<size_t>> diameter_impl() {Tree tree = Tree::builder(g).build();size_t root = 0;{tree.make_root(0);}root = max_element(tree.edge_dist.begin(),tree.edge_dist.end()) - tree.edge_dist.begin();{tree.make_root(root);}size_t leaf = max_element(tree.edge_dist.begin(),tree.edge_dist.end()) - tree.edge_dist.begin();TypeEdge sz = tree.edge_dist[leaf];vector<size_t> st;{tree.make_parent();while(leaf != root) {st.push_back(leaf);leaf = tree.parent[leaf].first;}st.push_back(root);}return make_pair(sz,st);}template<class TypeReroot> vector<TypeReroot> rerooting_impl(vector<TypeReroot> rerootdp,vector<TypeReroot> rerootparent) {for(size_t pa:order) for(auto& e:child[pa]) rerootdp[pa] = Operator::func_reroot_dp(rerootdp[pa],rerootdp[e.first]);for(size_t pa:reorder) {if(depth[pa]) rerootdp[pa] = Operator::func_reroot_dp(rerootdp[pa],rerootparent[pa]);size_t m = child[pa].size();for(int j = 0; j < m && depth[pa]; ++j){size_t ch = child[pa][j].first;rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],rerootparent[pa]);}if(m <= 1) continue;vector<TypeReroot> l(m),r(m);for(int j = 0; j < m; ++j) {size_t ch = child[pa][j].first;l[j] = rerootdp[ch];r[j] = rerootdp[ch];}for(int j = 1; j+1 < m; ++j) l[j] = Operator::func_reroot_merge(l[j],l[j-1]);for(int j = m-2; 0 <=j; --j) r[j] = Operator::func_reroot_merge(r[j],r[j+1]);size_t chl = child[pa].front().first;size_t chr = child[pa].back().first;rerootparent[chl] = Operator::func_reroot_dp(rerootparent[chl],r[1]);rerootparent[chr] = Operator::func_reroot_dp(rerootparent[chr],l[m-2]);for(int j = 1; j+1 < m; ++j) {size_t ch = child[pa][j].first;rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],l[j-1]);rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],r[j+1]);}}return rerootdp;}void make_eulertour() {dfs(reorder.front());eulertour_range.resize(num);for(int i = 0; i < eulertour.size(); ++i) eulertour_range[eulertour[i]].second = i+1;for(int i = eulertour.size()-1; 0 <= i; --i) eulertour_range[eulertour[i]].first = i;}public:vector<size_t> depth;vector<size_t> order;vector<size_t> reorder;vector<size_t> subtree_size;vector<pair<size_t,TypeEdge>> parent;vector<vector<pair<size_t,TypeEdge>>> child;vector<TypeEdge> edge_dist;vector<array<pair<size_t,TypeEdge>,Operator::bit>> ancestor;vector<size_t> eulertour;vector<pair<size_t,size_t>> eulertour_range;/*** O(N) builder*/static TreeBuilder<Operator> builder(Graph<TypeEdge>& graph) { return TreeBuilder<Operator>(graph);}/*** O(logN) after make_ancestor* return {lca,lca_dist} l and r must be connected*/pair<size_t,TypeEdge> lca(size_t l, size_t r) {return lca_impl(l,r);}/*** O(N) anytime* return {diameter size,diameter set}*/pair<TypeEdge,vector<size_t>> diameter(void){return diameter_impl();}/*** O(N) after make_child*/template<class TypeReroot> vector<TypeReroot> rerooting(const vector<TypeReroot>& rerootdp,const vector<TypeReroot>& rerootparent) {returnrerooting_impl(rerootdp,rerootparent);}};template<class Operator> class TreeBuilder {bool is_root_made =false;bool is_child_made =false;bool is_parent_made=false;public:using TypeEdge = typename Operator::TypeEdge;TreeBuilder(Graph<TypeEdge>& g):tree(g){}TreeBuilder& root(const int rt) { is_root_made=true; tree.make_root(rt); return *this;}TreeBuilder& root() { is_root_made=true; tree.make_root(); return *this;}TreeBuilder& child() { assert(is_root_made); is_child_made=true; tree.make_child(); return *this;}TreeBuilder& parent() { assert(is_root_made); is_parent_made=true; tree.make_parent(); return *this;}TreeBuilder& subtree_size() { assert(is_child_made); tree.make_subtree_size(); return *this;}TreeBuilder& ancestor() { assert(is_parent_made); tree.make_ancestor(); return *this;}TreeBuilder& eulertour() { assert(is_child_made); tree.make_eulertour(); return *this;}Tree<Operator>&& build() {return move(tree);}private:Tree<Operator> tree;};template<class T> struct TreeOperator{using TypeEdge = T;inline static constexpr size_t bit = 20;inline static constexpr TypeEdge unit_edge = 0;inline static constexpr TypeEdge unit_lca_edge = 0;inline static constexpr TypeEdge func_edge_merge(const TypeEdge& parent,const TypeEdge& w){return parent+w;}inline static constexpr pair<size_t,TypeEdge> func_lca_edge_merge(const pair<size_t,TypeEdge>& l,const pair<size_t,TypeEdge>& r){return make_pair(l.first,l.second+r.second);}template<class TypeReroot> inline static constexpr TypeReroot func_reroot_dp(const TypeReroot& l,const TypeReroot& r) {return {l.first+r.first+r.second,l.second+r.second};}template<class TypeReroot> inline static constexpr TypeReroot func_reroot_merge(const TypeReroot& l,const TypeReroot& r) {return {l.first+r.first,l.second+r.second};}};/** @title LazySegmentTree - 非再帰抽象化遅延評価セグメント木* @docs md/segment/LazySegmentTree.md*/template<class Operator> class LazySegmentTree {using TypeNode = typename Operator::TypeNode;using TypeLazy = typename Operator::TypeLazy;size_t num;size_t length;size_t height;vector<TypeNode> node;vector<TypeLazy> lazy;vector<pair<size_t,size_t>> range;void propagate(int k) {if(lazy[k] == Operator::unit_lazy) return;node[k] = Operator::func_merge(node[k],lazy[k],range[k].first,range[k].second);if(k < length) lazy[2*k+0] = Operator::func_lazy(lazy[2*k+0],lazy[k]);if(k < length) lazy[2*k+1] = Operator::func_lazy(lazy[2*k+1],lazy[k]);lazy[k] = Operator::unit_lazy;}public://unitで初期化LazySegmentTree(const size_t num) : num(num) {for (length = 1,height = 0; length <= num; length *= 2, height++);node.resize(2 * length, Operator::unit_node);lazy.resize(2 * length, Operator::unit_lazy);for (int i = 0; i < num; ++i) node[i + length] = Operator::unit_node;for (int i = length - 1; i >= 0; --i) node[i] = Operator::func_node(node[(i<<1)+0],node[(i<<1)+1]);range.resize(2 * length);for (int i = 0; i < length; ++i) range[i+length] = make_pair(i,i+1);for (int i = length - 1; i >= 0; --i) range[i] = make_pair(range[(i<<1)+0].first,range[(i<<1)+1].second);}// //同じinitで初期化LazySegmentTree(const size_t num, const TypeNode init) : num(num) {for (length = 1,height = 0; length <= num; length *= 2, height++);node.resize(2 * length, Operator::unit_node);lazy.resize(2 * length, Operator::unit_lazy);for (int i = 0; i < num; ++i) node[i + length] = init;for (int i = length - 1; i >= 0; --i) node[i] = Operator::func_node(node[(i<<1)+0],node[(i<<1)+1]);range.resize(2 * length);for (int i = 0; i < length; ++i) range[i+length] = make_pair(i,i+1);for (int i = length - 1; i >= 0; --i) range[i] = make_pair(range[(i<<1)+0].first,range[(i<<1)+1].second);}//vectorで初期化LazySegmentTree(const vector<TypeNode>& vec) : num(vec.size()) {for (length = 1,height = 0; length <= vec.size(); length *= 2, height++);node.resize(2 * length, Operator::unit_node);lazy.resize(2 * length, Operator::unit_lazy);for (int i = 0; i < vec.size(); ++i) node[i + length] = vec[i];for (int i = length - 1; i >= 0; --i) node[i] = Operator::func_node(node[(i<<1)+0],node[(i<<1)+1]);range.resize(2 * length);for (int i = 0; i < length; ++i) range[i+length] = make_pair(i,i+1);for (int i = length - 1; i >= 0; --i) range[i] = make_pair(range[(i<<1)+0].first,range[(i<<1)+1].second);}//update [a,b)void update(int a, int b, TypeLazy x) {int l = a + length, r = b + length - 1;for (int i = height; 0 < i; --i) propagate(l >> i), propagate(r >> i);for(r++; l < r; l >>=1, r >>=1) {if(l&1) lazy[l] = Operator::func_lazy(lazy[l],x), propagate(l),l++;if(r&1) --r,lazy[r] = Operator::func_lazy(lazy[r],x), propagate(r);}l = a + length, r = b + length - 1;while ((l>>=1),(r>>=1),l) {if(lazy[l] == Operator::unit_lazy) node[l] = Operator::func_node(Operator::func_merge(node[(l<<1)+0],lazy[(l<<1)+0],range[(l<<1)+0].first,range[(l<<1)+0].second),Operator::func_merge(node[(l<<1)+1],lazy[(l<<1)+1],range[(l<<1)+1].first,range[(l<<1)+1].second));if(lazy[r] == Operator::unit_lazy) node[r] = Operator::func_node(Operator::func_merge(node[(r<<1)+0],lazy[(r<<1)+0],range[(r<<1)+0].first,range[(r<<1)+0].second),Operator::func_merge(node[(r<<1)+1],lazy[(r<<1)+1],range[(r<<1)+1].first,range[(r<<1)+1].second));}}//get [a,b)TypeNode get(int a, int b) {int l = a + length, r = b + length - 1;for (int i = height; 0 < i; --i) propagate(l >> i), propagate(r >> i);TypeNode vl = Operator::unit_node, vr = Operator::unit_node;for(r++; l < r; l >>=1, r >>=1) {if(l&1) vl = Operator::func_node(vl,Operator::func_merge(node[l],lazy[l],range[l].first,range[l].second)),l++;if(r&1) r--,vr = Operator::func_node(Operator::func_merge(node[r],lazy[r],range[r].first,range[r].second),vr);}return Operator::func_node(vl,vr);}//return [0,length]int prefix_binary_search(TypeNode var) {int l = length, r = 2*length - 1;for (int i = height; 0 < i; --i) propagate(l >> i), propagate(r >> i);if(!Operator::func_check(node[1],var)) return num;TypeNode ret = Operator::unit_node;size_t idx = 2;for(; idx < 2*length; idx<<=1){if(!Operator::func_check(Operator::func_node(ret,Operator::func_merge(node[idx],lazy[idx],range[idx].first,range[idx].second)),var)) {ret = Operator::func_node(ret,Operator::func_merge(node[idx],lazy[idx],range[idx].first,range[idx].second));idx++;}}return min((idx>>1) - length,num);}//range[l,r) return [l,r]int binary_search(size_t l, size_t r, TypeNode var) {if (l < 0 || length <= l || r < 0 || length < r) return -1;for (int i = height; 0 < i; --i) propagate((l+length) >> i), propagate((r+length-1) >> i);TypeNode ret = Operator::unit_node;size_t off = l;for(size_t idx = l+length; idx < 2*length && off < r; ){if(range[idx].second<=r && !Operator::func_check(Operator::func_node(ret,Operator::func_merge(node[idx],lazy[idx],range[idx].first,range[idx].second)),var)) {ret = Operator::func_node(ret,Operator::func_merge(node[idx],lazy[idx],range[idx].first,range[idx].second));off = range[idx++].second;if(!(idx&1)) idx >>= 1;}else{idx <<=1;}}return off;}void print(){// cout << "node" << endl;// for(int i = 1,j = 1; i < 2*length; ++i) {// cout << node[i] << " ";// if(i==((1<<j)-1) && ++j) cout << endl;// }// cout << "lazy" << endl;// for(int i = 1,j = 1; i < 2*length; ++i) {// cout << lazy[i] << " ";// if(i==((1<<j)-1) && ++j) cout << endl;// }cout << "vector" << endl;cout << "{ " << get(0,1);for(int i = 1; i < length; ++i) cout << ", " << get(i,i+1);cout << " }" << endl;}};//node:総和 lazy:加算template<class T, class U> struct NodeEulerTourSumRangeAdd {using TypeNode = T;using TypeLazy = U;inline static constexpr TypeNode unit_node = {0,0};inline static constexpr TypeLazy unit_lazy = 0;inline static constexpr TypeNode func_node(TypeNode l,TypeNode r){return {l.first+r.first,l.second+r.second};}inline static constexpr TypeLazy func_lazy(TypeLazy old_lazy,TypeLazy new_lazy){return old_lazy+new_lazy;}inline static constexpr TypeNode func_merge(TypeNode node,TypeLazy lazy,int l, int r){return {node.first+node.second*lazy,node.second};}inline static constexpr bool func_check(TypeNode nodeVal,TypeNode var){return var <= nodeVal;}// LazySegmentTree<NodeSumRangeUpdate<ll,ll>> Seg(N,0);};int main() {int N; cin >> N;Graph<long long> g(N);for(int i=0;i<N-1;++i) {int u,v,w; cin >> u >> v >> w;g.make_bidirectional_edge(u,v,w);}auto tree = Tree<TreeOperator<long long>>::builder(g).root(0).parent().child().eulertour().build();int M = tree.eulertour.size();vector<pair<long long,long long>> init(M,{0,0});for(int i=1;i<M;++i) {int l=tree.eulertour[i-1], r = tree.eulertour[i], sgn;long long w;if(tree.depth[l]<tree.depth[r]) {w = tree.parent[r].second;sgn = 1;}else {w = tree.parent[l].second;sgn = -1;}init[i] = {w*sgn,sgn};}LazySegmentTree<NodeEulerTourSumRangeAdd<pair<long long,long long>,long long>> seg(init);int Q; cin >> Q;while(Q--) {int q; cin >> q;int a; cin >> a;int l = tree.eulertour_range[a].first;int r = tree.eulertour_range[a].second;if(q==1) {long long x; cin >> x;seg.update(l+1,r,x);}else {cout << seg.get(0,l+1).first << endl;}}return 0;}