結果
問題 | No.900 aδδitivee |
ユーザー | ningenMe |
提出日時 | 2021-04-23 03:12:01 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 315 ms / 2,000 ms |
コード長 | 20,173 bytes |
コンパイル時間 | 2,851 ms |
コンパイル使用メモリ | 234,912 KB |
実行使用メモリ | 50,024 KB |
最終ジャッジ日時 | 2024-07-04 06:38:43 |
合計ジャッジ時間 | 12,211 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 315 ms
47,236 KB |
testcase_08 | AC | 305 ms
47,112 KB |
testcase_09 | AC | 300 ms
47,112 KB |
testcase_10 | AC | 288 ms
47,112 KB |
testcase_11 | AC | 296 ms
47,116 KB |
testcase_12 | AC | 292 ms
47,112 KB |
testcase_13 | AC | 296 ms
47,108 KB |
testcase_14 | AC | 287 ms
47,112 KB |
testcase_15 | AC | 293 ms
47,112 KB |
testcase_16 | AC | 290 ms
47,108 KB |
testcase_17 | AC | 299 ms
47,236 KB |
testcase_18 | AC | 289 ms
47,108 KB |
testcase_19 | AC | 299 ms
47,104 KB |
testcase_20 | AC | 292 ms
47,104 KB |
testcase_21 | AC | 303 ms
47,240 KB |
testcase_22 | AC | 290 ms
49,900 KB |
testcase_23 | AC | 279 ms
49,968 KB |
testcase_24 | AC | 284 ms
50,024 KB |
testcase_25 | AC | 291 ms
49,900 KB |
testcase_26 | AC | 294 ms
49,896 KB |
testcase_27 | AC | 293 ms
50,024 KB |
testcase_28 | AC | 289 ms
49,904 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; #define ALL(obj) (obj).begin(),(obj).end() #define SPEED cin.tie(0);ios::sync_with_stdio(false); template<class T> using PQ = priority_queue<T>; template<class T> using PQR = priority_queue<T,vector<T>,greater<T>>; constexpr long long MOD = (long long)1e9 + 7; constexpr long long MOD2 = 998244353; constexpr long long HIGHINF = (long long)1e18; constexpr long long LOWINF = (long long)1e15; constexpr long double PI = 3.1415926535897932384626433L; template <class T> vector<T> multivector(size_t N,T init){return vector<T>(N,init);} template <class... T> auto multivector(size_t N,T... t){return vector<decltype(multivector(t...))>(N,multivector(t...));} template <class T> void corner(bool flg, T hoge) {if (flg) {cout << hoge << endl; exit(0);}} template <class T, class U>ostream &operator<<(ostream &o, const map<T, U>&obj) {o << "{"; for (auto &x : obj) o << " {" << x.first << " : " << x.second << "}" << ","; o << " }"; return o;} template <class T>ostream &operator<<(ostream &o, const set<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const multiset<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const vector<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;} template <class T, class U>ostream &operator<<(ostream &o, const pair<T, U>&obj) {o << "{" << obj.first << ", " << obj.second << "}"; return o;} template <template <class tmp> class T, class U> ostream &operator<<(ostream &o, const T<U> &obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr)o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} void print(void) {cout << endl;} template <class Head> void print(Head&& head) {cout << head;print();} template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) {cout << head << " ";print(forward<Tail>(tail)...);} template <class T> void chmax(T& a, const T b){a=max(a,b);} template <class T> void chmin(T& a, const T b){a=min(a,b);} void YN(bool flg) {cout << (flg ? "YES" : "NO") << endl;} void Yn(bool flg) {cout << (flg ? "Yes" : "No") << endl;} void yn(bool flg) {cout << (flg ? "yes" : "no") << endl;} /* * @title Graph * @docs md/graph/Graph.md */ template<class T> class Graph{ private: const size_t N,H,W; public: vector<vector<pair<size_t,T>>> edges; Graph(const size_t N):H(-1),W(-1),N(N), edges(N) {} Graph(const size_t H, const size_t W):H(H),W(W),N(H*W), edges(H*W) {} inline void make_edge(size_t from, size_t to, T w) { edges[from].emplace_back(to,w); } //{from_y,from_x} -> {to_y,to_x} inline void make_edge(pair<size_t,size_t> from, pair<size_t,size_t> to, T w) { make_edge(from.first*W+from.second,to.first*W+to.second,w); } inline void make_bidirectional_edge(size_t from, size_t to, T w) { make_edge(from,to,w); make_edge(to,from,w); } inline void make_bidirectional_edge(pair<size_t,size_t> from, pair<size_t,size_t> to, T w) { make_edge(from.first*W+from.second,to.first*W+to.second,w); make_edge(to.first*W+to.second,from.first*W+from.second,w); } inline size_t size(){return N;} inline size_t idx(pair<size_t,size_t> yx){return yx.first*W+yx.second;} }; /* * @title Tree - 木 * @docs md/graph/Tree.md */ template<class Operator> class TreeBuilder; template<class Operator> class Tree { using TypeEdge = typename Operator::TypeEdge; size_t num; size_t ord; Graph<TypeEdge>& g; friend TreeBuilder<Operator>; /** * constructor * O(N) */ Tree(Graph<TypeEdge>& graph): g(graph), num(graph.size()), depth(graph.size(),-1), order(graph.size()), edge_dist(graph.size()){ } //for make_depth void dfs(int curr, int prev){ for(const auto& e:g.edges[curr]){ const int& next = e.first; if(next==prev) continue; depth[next] = depth[curr] + 1; edge_dist[next] = Operator::func_edge_merge(edge_dist[curr],e.second); dfs(next,curr); order[ord++] = next; } } //for make_eulertour void dfs(int from){ eulertour.push_back(from); for(auto& e:child[from]){ int to = e.first; dfs(to); eulertour.push_back(from); } } /** * 根付き木を作る * O(N) you can use anytime */ void make_root(const int root) { depth[root] = 0; edge_dist[root] = Operator::unit_edge; ord = 0; dfs(root,-1); order[ord++] = root; reverse_copy(order.begin(),order.end(),back_inserter(reorder)); } /** * 根付き木を作る * O(N) you can use anytime */ void make_root() { ord = 0; for(int i=0;i<num;++i) { if(depth[i]!=-1) continue; depth[i] = 0; edge_dist[i] = Operator::unit_edge; dfs(i,-1); order[ord++] = i; } reverse_copy(order.begin(),order.end(),back_inserter(reorder)); } /** * 子を作る * O(N) after make_root */ void make_child(const int root = 0) { child.resize(num); for (size_t i = 0; i < num; ++i) for (auto& e : g.edges[i]) if (depth[i] < depth[e.first]) child[i].push_back(e); } /** * 部分木のサイズを作る * O(N) after make_child */ void make_subtree_size() { subtree_size.resize(num,1); for (size_t i:order) for (auto e : child[i]) subtree_size[i] += subtree_size[e.first]; } /** * 親を作る * O(N) after make_root */ void make_parent() { parent.resize(num,make_pair(num,Operator::unit_edge)); for (size_t i = 0; i < num; ++i) for (auto& e : g.edges[i]) if (depth[i] > depth[e.first]) parent[i] = e; } void make_ancestor() { ancestor.resize(num); for (size_t i = 0; i < num; ++i) ancestor[i][0] = (parent[i].first!=num?parent[i]:make_pair(i,Operator::unit_lca_edge)); for (size_t j = 1; j < Operator::bit; ++j) { for (size_t i = 0; i < num; ++i) { size_t k = ancestor[i][j - 1].first; ancestor[i][j] = Operator::func_lca_edge_merge(ancestor[k][j - 1],ancestor[i][j - 1]); } } } pair<size_t,TypeEdge> lca_impl(size_t l, size_t r) { if (depth[l] < depth[r]) swap(l, r); int diff = depth[l] - depth[r]; auto ancl = make_pair(l,Operator::unit_lca_edge); auto ancr = make_pair(r,Operator::unit_lca_edge); for (int j = 0; j < Operator::bit; ++j) { if (diff & (1 << j)) ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][j],ancl); } if(ancl.first==ancr.first) return ancl; for (int j = Operator::bit - 1; 0 <= j; --j) { if(ancestor[ancl.first][j].first!=ancestor[ancr.first][j].first) { ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][j],ancl); ancr = Operator::func_lca_edge_merge(ancestor[ancr.first][j],ancr); } } ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][0],ancl); ancr = Operator::func_lca_edge_merge(ancestor[ancr.first][0],ancr); return Operator::func_lca_edge_merge(ancl,ancr); } pair<TypeEdge,vector<size_t>> diameter_impl() { Tree tree = Tree::builder(g).build(); size_t root = 0; { tree.make_root(0); } root = max_element(tree.edge_dist.begin(),tree.edge_dist.end()) - tree.edge_dist.begin(); { tree.make_root(root); } size_t leaf = max_element(tree.edge_dist.begin(),tree.edge_dist.end()) - tree.edge_dist.begin(); TypeEdge sz = tree.edge_dist[leaf]; vector<size_t> st; { tree.make_parent(); while(leaf != root) { st.push_back(leaf); leaf = tree.parent[leaf].first; } st.push_back(root); } return make_pair(sz,st); } template<class TypeReroot> vector<TypeReroot> rerooting_impl(vector<TypeReroot> rerootdp,vector<TypeReroot> rerootparent) { for(size_t pa:order) for(auto& e:child[pa]) rerootdp[pa] = Operator::func_reroot_dp(rerootdp[pa],rerootdp[e.first]); for(size_t pa:reorder) { if(depth[pa]) rerootdp[pa] = Operator::func_reroot_dp(rerootdp[pa],rerootparent[pa]); size_t m = child[pa].size(); for(int j = 0; j < m && depth[pa]; ++j){ size_t ch = child[pa][j].first; rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],rerootparent[pa]); } if(m <= 1) continue; vector<TypeReroot> l(m),r(m); for(int j = 0; j < m; ++j) { size_t ch = child[pa][j].first; l[j] = rerootdp[ch]; r[j] = rerootdp[ch]; } for(int j = 1; j+1 < m; ++j) l[j] = Operator::func_reroot_merge(l[j],l[j-1]); for(int j = m-2; 0 <=j; --j) r[j] = Operator::func_reroot_merge(r[j],r[j+1]); size_t chl = child[pa].front().first; size_t chr = child[pa].back().first; rerootparent[chl] = Operator::func_reroot_dp(rerootparent[chl],r[1]); rerootparent[chr] = Operator::func_reroot_dp(rerootparent[chr],l[m-2]); for(int j = 1; j+1 < m; ++j) { size_t ch = child[pa][j].first; rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],l[j-1]); rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],r[j+1]); } } return rerootdp; } void make_eulertour() { dfs(reorder.front()); eulertour_range.resize(num); for(int i = 0; i < eulertour.size(); ++i) eulertour_range[eulertour[i]].second = i+1; for(int i = eulertour.size()-1; 0 <= i; --i) eulertour_range[eulertour[i]].first = i; } public: vector<size_t> depth; vector<size_t> order; vector<size_t> reorder; vector<size_t> subtree_size; vector<pair<size_t,TypeEdge>> parent; vector<vector<pair<size_t,TypeEdge>>> child; vector<TypeEdge> edge_dist; vector<array<pair<size_t,TypeEdge>,Operator::bit>> ancestor; vector<size_t> eulertour; vector<pair<size_t,size_t>> eulertour_range; /** * O(N) builder */ static TreeBuilder<Operator> builder(Graph<TypeEdge>& graph) { return TreeBuilder<Operator>(graph);} /** * O(logN) after make_ancestor * return {lca,lca_dist} l and r must be connected */ pair<size_t,TypeEdge> lca(size_t l, size_t r) {return lca_impl(l,r);} /** * O(N) anytime * return {diameter size,diameter set} */ pair<TypeEdge,vector<size_t>> diameter(void){return diameter_impl();} /** * O(N) after make_child */ template<class TypeReroot> vector<TypeReroot> rerooting(const vector<TypeReroot>& rerootdp,const vector<TypeReroot>& rerootparent) {return rerooting_impl(rerootdp,rerootparent);} }; template<class Operator> class TreeBuilder { bool is_root_made =false; bool is_child_made =false; bool is_parent_made=false; public: using TypeEdge = typename Operator::TypeEdge; TreeBuilder(Graph<TypeEdge>& g):tree(g){} TreeBuilder& root(const int rt) { is_root_made=true; tree.make_root(rt); return *this;} TreeBuilder& root() { is_root_made=true; tree.make_root(); return *this;} TreeBuilder& child() { assert(is_root_made); is_child_made=true; tree.make_child(); return *this;} TreeBuilder& parent() { assert(is_root_made); is_parent_made=true; tree.make_parent(); return *this;} TreeBuilder& subtree_size() { assert(is_child_made); tree.make_subtree_size(); return *this;} TreeBuilder& ancestor() { assert(is_parent_made); tree.make_ancestor(); return *this;} TreeBuilder& eulertour() { assert(is_child_made); tree.make_eulertour(); return *this;} Tree<Operator>&& build() {return move(tree);} private: Tree<Operator> tree; }; template<class T> struct TreeOperator{ using TypeEdge = T; inline static constexpr size_t bit = 20; inline static constexpr TypeEdge unit_edge = 0; inline static constexpr TypeEdge unit_lca_edge = 0; inline static constexpr TypeEdge func_edge_merge(const TypeEdge& parent,const TypeEdge& w){return parent+w;} inline static constexpr pair<size_t,TypeEdge> func_lca_edge_merge(const pair<size_t,TypeEdge>& l,const pair<size_t,TypeEdge>& r){return make_pair(l.first,l.second+r.second);} template<class TypeReroot> inline static constexpr TypeReroot func_reroot_dp(const TypeReroot& l,const TypeReroot& r) {return {l.first+r.first+r.second,l.second+r.second};} template<class TypeReroot> inline static constexpr TypeReroot func_reroot_merge(const TypeReroot& l,const TypeReroot& r) {return {l.first+r.first,l.second+r.second};} }; /* * @title LazySegmentTree - 非再帰抽象化遅延評価セグメント木 * @docs md/segment/LazySegmentTree.md */ template<class Operator> class LazySegmentTree { using TypeNode = typename Operator::TypeNode; using TypeLazy = typename Operator::TypeLazy; size_t num; size_t length; size_t height; vector<TypeNode> node; vector<TypeLazy> lazy; vector<pair<size_t,size_t>> range; void propagate(int k) { if(lazy[k] == Operator::unit_lazy) return; node[k] = Operator::func_merge(node[k],lazy[k],range[k].first,range[k].second); if(k < length) lazy[2*k+0] = Operator::func_lazy(lazy[2*k+0],lazy[k]); if(k < length) lazy[2*k+1] = Operator::func_lazy(lazy[2*k+1],lazy[k]); lazy[k] = Operator::unit_lazy; } public: //unitで初期化 LazySegmentTree(const size_t num) : num(num) { for (length = 1,height = 0; length <= num; length *= 2, height++); node.resize(2 * length, Operator::unit_node); lazy.resize(2 * length, Operator::unit_lazy); for (int i = 0; i < num; ++i) node[i + length] = Operator::unit_node; for (int i = length - 1; i >= 0; --i) node[i] = Operator::func_node(node[(i<<1)+0],node[(i<<1)+1]); range.resize(2 * length); for (int i = 0; i < length; ++i) range[i+length] = make_pair(i,i+1); for (int i = length - 1; i >= 0; --i) range[i] = make_pair(range[(i<<1)+0].first,range[(i<<1)+1].second); } // //同じinitで初期化 LazySegmentTree(const size_t num, const TypeNode init) : num(num) { for (length = 1,height = 0; length <= num; length *= 2, height++); node.resize(2 * length, Operator::unit_node); lazy.resize(2 * length, Operator::unit_lazy); for (int i = 0; i < num; ++i) node[i + length] = init; for (int i = length - 1; i >= 0; --i) node[i] = Operator::func_node(node[(i<<1)+0],node[(i<<1)+1]); range.resize(2 * length); for (int i = 0; i < length; ++i) range[i+length] = make_pair(i,i+1); for (int i = length - 1; i >= 0; --i) range[i] = make_pair(range[(i<<1)+0].first,range[(i<<1)+1].second); } //vectorで初期化 LazySegmentTree(const vector<TypeNode>& vec) : num(vec.size()) { for (length = 1,height = 0; length <= vec.size(); length *= 2, height++); node.resize(2 * length, Operator::unit_node); lazy.resize(2 * length, Operator::unit_lazy); for (int i = 0; i < vec.size(); ++i) node[i + length] = vec[i]; for (int i = length - 1; i >= 0; --i) node[i] = Operator::func_node(node[(i<<1)+0],node[(i<<1)+1]); range.resize(2 * length); for (int i = 0; i < length; ++i) range[i+length] = make_pair(i,i+1); for (int i = length - 1; i >= 0; --i) range[i] = make_pair(range[(i<<1)+0].first,range[(i<<1)+1].second); } //update [a,b) void update(int a, int b, TypeLazy x) { int l = a + length, r = b + length - 1; for (int i = height; 0 < i; --i) propagate(l >> i), propagate(r >> i); for(r++; l < r; l >>=1, r >>=1) { if(l&1) lazy[l] = Operator::func_lazy(lazy[l],x), propagate(l),l++; if(r&1) --r,lazy[r] = Operator::func_lazy(lazy[r],x), propagate(r); } l = a + length, r = b + length - 1; while ((l>>=1),(r>>=1),l) { if(lazy[l] == Operator::unit_lazy) node[l] = Operator::func_node(Operator::func_merge(node[(l<<1)+0],lazy[(l<<1)+0],range[(l<<1)+0].first,range[(l<<1)+0].second),Operator::func_merge(node[(l<<1)+1],lazy[(l<<1)+1],range[(l<<1)+1].first,range[(l<<1)+1].second)); if(lazy[r] == Operator::unit_lazy) node[r] = Operator::func_node(Operator::func_merge(node[(r<<1)+0],lazy[(r<<1)+0],range[(r<<1)+0].first,range[(r<<1)+0].second),Operator::func_merge(node[(r<<1)+1],lazy[(r<<1)+1],range[(r<<1)+1].first,range[(r<<1)+1].second)); } } //get [a,b) TypeNode get(int a, int b) { int l = a + length, r = b + length - 1; for (int i = height; 0 < i; --i) propagate(l >> i), propagate(r >> i); TypeNode vl = Operator::unit_node, vr = Operator::unit_node; for(r++; l < r; l >>=1, r >>=1) { if(l&1) vl = Operator::func_node(vl,Operator::func_merge(node[l],lazy[l],range[l].first,range[l].second)),l++; if(r&1) r--,vr = Operator::func_node(Operator::func_merge(node[r],lazy[r],range[r].first,range[r].second),vr); } return Operator::func_node(vl,vr); } //return [0,length] int prefix_binary_search(TypeNode var) { int l = length, r = 2*length - 1; for (int i = height; 0 < i; --i) propagate(l >> i), propagate(r >> i); if(!Operator::func_check(node[1],var)) return num; TypeNode ret = Operator::unit_node; size_t idx = 2; for(; idx < 2*length; idx<<=1){ if(!Operator::func_check(Operator::func_node(ret,Operator::func_merge(node[idx],lazy[idx],range[idx].first,range[idx].second)),var)) { ret = Operator::func_node(ret,Operator::func_merge(node[idx],lazy[idx],range[idx].first,range[idx].second)); idx++; } } return min((idx>>1) - length,num); } //range[l,r) return [l,r] int binary_search(size_t l, size_t r, TypeNode var) { if (l < 0 || length <= l || r < 0 || length < r) return -1; for (int i = height; 0 < i; --i) propagate((l+length) >> i), propagate((r+length-1) >> i); TypeNode ret = Operator::unit_node; size_t off = l; for(size_t idx = l+length; idx < 2*length && off < r; ){ if(range[idx].second<=r && !Operator::func_check(Operator::func_node(ret,Operator::func_merge(node[idx],lazy[idx],range[idx].first,range[idx].second)),var)) { ret = Operator::func_node(ret,Operator::func_merge(node[idx],lazy[idx],range[idx].first,range[idx].second)); off = range[idx++].second; if(!(idx&1)) idx >>= 1; } else{ idx <<=1; } } return off; } void print(){ // cout << "node" << endl; // for(int i = 1,j = 1; i < 2*length; ++i) { // cout << node[i] << " "; // if(i==((1<<j)-1) && ++j) cout << endl; // } // cout << "lazy" << endl; // for(int i = 1,j = 1; i < 2*length; ++i) { // cout << lazy[i] << " "; // if(i==((1<<j)-1) && ++j) cout << endl; // } cout << "vector" << endl; cout << "{ " << get(0,1); for(int i = 1; i < length; ++i) cout << ", " << get(i,i+1); cout << " }" << endl; } }; //node:総和 lazy:加算 template<class T, class U> struct NodeEulerTourSumRangeAdd { using TypeNode = T; using TypeLazy = U; inline static constexpr TypeNode unit_node = {0,0}; inline static constexpr TypeLazy unit_lazy = 0; inline static constexpr TypeNode func_node(TypeNode l,TypeNode r){return {l.first+r.first,l.second+r.second};} inline static constexpr TypeLazy func_lazy(TypeLazy old_lazy,TypeLazy new_lazy){return old_lazy+new_lazy;} inline static constexpr TypeNode func_merge(TypeNode node,TypeLazy lazy,int l, int r){return {node.first+node.second*lazy,node.second};} inline static constexpr bool func_check(TypeNode nodeVal,TypeNode var){return var <= nodeVal;} // LazySegmentTree<NodeSumRangeUpdate<ll,ll>> Seg(N,0); }; int main() { int N; cin >> N; Graph<long long> g(N); for(int i=0;i<N-1;++i) { int u,v,w; cin >> u >> v >> w; g.make_bidirectional_edge(u,v,w); } auto tree = Tree<TreeOperator<long long>>::builder(g).root(0).parent().child().eulertour().build(); int M = tree.eulertour.size(); vector<pair<long long,long long>> init(M,{0,0}); for(int i=1;i<M;++i) { int l=tree.eulertour[i-1], r = tree.eulertour[i], sgn; long long w; if(tree.depth[l]<tree.depth[r]) { w = tree.parent[r].second; sgn = 1; } else { w = tree.parent[l].second; sgn = -1; } init[i] = {w*sgn,sgn}; } LazySegmentTree<NodeEulerTourSumRangeAdd<pair<long long,long long>,long long>> seg(init); int Q; cin >> Q; while(Q--) { int q; cin >> q; int a; cin >> a; int l = tree.eulertour_range[a].first; int r = tree.eulertour_range[a].second; if(q==1) { long long x; cin >> x; seg.update(l+1,r,x); } else { cout << seg.get(0,l+1).first << endl; } } return 0; }