結果
問題 | No.650 行列木クエリ |
ユーザー | ningenMe |
提出日時 | 2021-04-23 04:19:06 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 131 ms / 2,000 ms |
コード長 | 23,514 bytes |
コンパイル時間 | 3,078 ms |
コンパイル使用メモリ | 245,344 KB |
実行使用メモリ | 41,444 KB |
最終ジャッジ日時 | 2024-07-04 06:54:00 |
合計ジャッジ時間 | 5,213 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 49 ms
10,496 KB |
testcase_02 | AC | 129 ms
36,060 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 51 ms
10,368 KB |
testcase_05 | AC | 131 ms
36,088 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 47 ms
11,520 KB |
testcase_09 | AC | 102 ms
41,444 KB |
testcase_10 | AC | 2 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; #define ALL(obj) (obj).begin(),(obj).end() #define SPEED cin.tie(0);ios::sync_with_stdio(false); template <class T, class U>ostream &operator<<(ostream &o, const map<T, U>&obj) {o << "{"; for (auto &x : obj) o << " {" << x.first << " : " << x.second << "}" << ","; o << " }"; return o;} template <class T>ostream &operator<<(ostream &o, const set<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const multiset<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const vector<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const array<T,4>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;} template <class T, class U>ostream &operator<<(ostream &o, const pair<T, U>&obj) {o << "{" << obj.first << ", " << obj.second << "}"; return o;} template <template <class tmp> class T, class U> ostream &operator<<(ostream &o, const T<U> &obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr)o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} void print(void) {cout << endl;} template <class Head> void print(Head&& head) {cout << head;print();} template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) {cout << head << " ";print(forward<Tail>(tail)...);} constexpr long long MOD = 1000000007; /* * @title Graph * @docs md/graph/Graph.md */ template<class T> class Graph{ private: const size_t N,H,W; public: vector<vector<pair<size_t,T>>> edges; Graph(const size_t N):H(-1),W(-1),N(N), edges(N) {} Graph(const size_t H, const size_t W):H(H),W(W),N(H*W), edges(H*W) {} inline void make_edge(size_t from, size_t to, T w) { edges[from].emplace_back(to,w); } //{from_y,from_x} -> {to_y,to_x} inline void make_edge(pair<size_t,size_t> from, pair<size_t,size_t> to, T w) { make_edge(from.first*W+from.second,to.first*W+to.second,w); } inline void make_bidirectional_edge(size_t from, size_t to, T w) { make_edge(from,to,w); make_edge(to,from,w); } inline void make_bidirectional_edge(pair<size_t,size_t> from, pair<size_t,size_t> to, T w) { make_edge(from.first*W+from.second,to.first*W+to.second,w); make_edge(to.first*W+to.second,from.first*W+from.second,w); } inline size_t size(){return N;} inline size_t idx(pair<size_t,size_t> yx){return yx.first*W+yx.second;} }; /* * @title ModInt * @docs md/util/ModInt.md */ template<long long mod> class ModInt { public: long long x; constexpr ModInt():x(0) {} constexpr ModInt(long long y) : x(y>=0?(y%mod): (mod - (-y)%mod)%mod) {} ModInt &operator+=(const ModInt &p) {if((x += p.x) >= mod) x -= mod;return *this;} ModInt &operator+=(const long long y) {ModInt p(y);if((x += p.x) >= mod) x -= mod;return *this;} ModInt &operator+=(const int y) {ModInt p(y);if((x += p.x) >= mod) x -= mod;return *this;} ModInt &operator-=(const ModInt &p) {if((x += mod - p.x) >= mod) x -= mod;return *this;} ModInt &operator-=(const long long y) {ModInt p(y);if((x += mod - p.x) >= mod) x -= mod;return *this;} ModInt &operator-=(const int y) {ModInt p(y);if((x += mod - p.x) >= mod) x -= mod;return *this;} ModInt &operator*=(const ModInt &p) {x = (x * p.x % mod);return *this;} ModInt &operator*=(const long long y) {ModInt p(y);x = (x * p.x % mod);return *this;} ModInt &operator*=(const int y) {ModInt p(y);x = (x * p.x % mod);return *this;} ModInt &operator^=(const ModInt &p) {x = (x ^ p.x) % mod;return *this;} ModInt &operator^=(const long long y) {ModInt p(y);x = (x ^ p.x) % mod;return *this;} ModInt &operator^=(const int y) {ModInt p(y);x = (x ^ p.x) % mod;return *this;} ModInt &operator/=(const ModInt &p) {*this *= p.inv();return *this;} ModInt &operator/=(const long long y) {ModInt p(y);*this *= p.inv();return *this;} ModInt &operator/=(const int y) {ModInt p(y);*this *= p.inv();return *this;} ModInt operator=(const int y) {ModInt p(y);*this = p;return *this;} ModInt operator=(const long long y) {ModInt p(y);*this = p;return *this;} ModInt operator-() const {return ModInt(-x); } ModInt operator++() {x++;if(x>=mod) x-=mod;return *this;} ModInt operator--() {x--;if(x<0) x+=mod;return *this;} ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator^(const ModInt &p) const { return ModInt(*this) ^= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inv() const {int a=x,b=mod,u=1,v=0,t;while(b > 0) {t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);} return ModInt(u);} ModInt pow(long long n) const {ModInt ret(1), mul(x);for(;n > 0;mul *= mul,n >>= 1) if(n & 1) ret *= mul;return ret;} friend ostream &operator<<(ostream &os, const ModInt &p) {return os << p.x;} friend istream &operator>>(istream &is, ModInt &a) {long long t;is >> t;a = ModInt<mod>(t);return (is);} }; using modint = ModInt<MOD>; /* * @title Matrix - 行列演算 * @docs md/math/Matrix.md */ template <class T, int H, int W = H> class Matrix { public: int h,w; array<array<T,W>,H> a; Matrix():h(H),w(W){ // do nothing } Matrix(const vector<vector<T>>& vec):h(H),w(W) { assert(vec.size()==H && vec.front().size()==W); for(int i = 0; i < H; ++i) for(int j = 0; j < W; ++j) a[i][j]=vec[i][j]; } static Matrix E() { assert(H==W); Matrix res = Matrix(); for(int i = 0; i < H; ++i) res[i][i]=1; return res; } Matrix &operator+=(const Matrix &r) { assert(H==r.h&&W==r.w); for(int i = 0; i < H; ++i) for(int j = 0; j < W; ++j) a[i][j]+=r[i][j]; return *this; } Matrix &operator-=(const Matrix &r) { assert(H==r.h&&W==r.w); for(int i = 0; i < H; ++i) for(int j = 0; j < W; ++j) a[i][j]-=r[i][j]; return *this; } Matrix &operator*=(const Matrix &r) { assert(W==r.h); Matrix res = Matrix(); for(int i = 0; i < H; ++i) for(int j = 0; j < r.w; ++j) for(int k = 0; k < W; ++k) res[i][j]+=(a[i][k])*(r[k][j]); a.swap(res.a); return *this; } Matrix operator+(const Matrix& r) const { return Matrix(*this) += r; } Matrix operator-(const Matrix& r) const { return Matrix(*this) -= r; } Matrix operator*(const Matrix& r) const { return Matrix(*this) *= r; } inline array<T,W> &operator[](int i) { return a[i]; } inline const array<T,W> &operator[](int i) const { return a[i]; } Matrix pow(long long K) const { assert(H == W); Matrix x(*this); Matrix res = this->E(); for (; K > 0; K /= 2) { if (K & 1) res *= x; x *= x; } return res; } T determinant(void) const { assert(H==W); Matrix x(*this); T res = 1; for(int i = 0; i < H; i++) { int idx = -1; for(int j = i; j < W; j++) if(x[j][i] != 0) idx = j; if(idx == -1) return 0; if(i != idx) { res *= -1; swap(x[i], x[idx]); } res *= x[i][i]; T tmp = x[i][i]; for(int j = 0; j < W; ++j) x[i][j] /= tmp; for(int j = i + 1; j < H; j++) { tmp = x[j][i]; for(int k = 0; k < W; k++) x[j][k] -= x[i][k]*tmp; } } return res; } }; /* * @title Tree - 木 * @docs md/graph/Tree.md */ template<class Operator> class TreeBuilder; template<class Operator> class Tree { using TypeEdge = typename Operator::TypeEdge; size_t num; size_t ord; Graph<TypeEdge>& g; friend TreeBuilder<Operator>; Tree(Graph<TypeEdge>& graph): g(graph), num(graph.size()), depth(graph.size(),-1), order(graph.size()), edge_dist(graph.size()){ } //for make_depth void dfs(int curr, int prev){ for(const auto& e:g.edges[curr]){ const int& next = e.first; if(next==prev) continue; depth[next] = depth[curr] + 1; edge_dist[next] = Operator::func_edge_merge(edge_dist[curr],e.second); dfs(next,curr); order[ord++] = next; } } //for make_eulertour void dfs(int from){ eulertour.push_back(from); for(auto& e:child[from]){ int to = e.first; dfs(to); eulertour.push_back(from); } } void make_root(const int root) { depth[root] = 0; edge_dist[root] = Operator::unit_edge; ord = 0; dfs(root,-1); order[ord++] = root; reverse_copy(order.begin(),order.end(),back_inserter(reorder)); } void make_root() { ord = 0; for(int i=0;i<num;++i) { if(depth[i]!=-1) continue; depth[i] = 0; edge_dist[i] = Operator::unit_edge; dfs(i,-1); order[ord++] = i; } reverse_copy(order.begin(),order.end(),back_inserter(reorder)); } void make_child(const int root = 0) { child.resize(num); for (size_t i = 0; i < num; ++i) for (auto& e : g.edges[i]) if (depth[i] < depth[e.first]) child[i].push_back(e); } void make_subtree_size() { subtree_size.resize(num,1); for (size_t i:order) for (auto e : child[i]) subtree_size[i] += subtree_size[e.first]; } void make_parent() { parent.resize(num,make_pair(num,Operator::unit_edge)); for (size_t i = 0; i < num; ++i) for (auto& e : g.edges[i]) if (depth[i] > depth[e.first]) parent[i] = e; } void make_ancestor() { ancestor.resize(num); for (size_t i = 0; i < num; ++i) ancestor[i][0] = (parent[i].first!=num?parent[i]:make_pair(i,Operator::unit_lca_edge)); for (size_t j = 1; j < Operator::bit; ++j) { for (size_t i = 0; i < num; ++i) { size_t k = ancestor[i][j - 1].first; ancestor[i][j] = Operator::func_lca_edge_merge(ancestor[k][j - 1],ancestor[i][j - 1]); } } } pair<size_t,TypeEdge> lca_impl(size_t l, size_t r) { if (depth[l] < depth[r]) swap(l, r); int diff = depth[l] - depth[r]; auto ancl = make_pair(l,Operator::unit_lca_edge); auto ancr = make_pair(r,Operator::unit_lca_edge); for (int j = 0; j < Operator::bit; ++j) { if (diff & (1 << j)) ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][j],ancl); } if(ancl.first==ancr.first) return ancl; for (int j = Operator::bit - 1; 0 <= j; --j) { if(ancestor[ancl.first][j].first!=ancestor[ancr.first][j].first) { ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][j],ancl); ancr = Operator::func_lca_edge_merge(ancestor[ancr.first][j],ancr); } } ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][0],ancl); ancr = Operator::func_lca_edge_merge(ancestor[ancr.first][0],ancr); return Operator::func_lca_edge_merge(ancl,ancr); } pair<TypeEdge,vector<size_t>> diameter_impl() { Tree tree = Tree::builder(g).build(); size_t root = 0; { tree.make_root(0); } root = max_element(tree.edge_dist.begin(),tree.edge_dist.end()) - tree.edge_dist.begin(); { tree.make_root(root); } size_t leaf = max_element(tree.edge_dist.begin(),tree.edge_dist.end()) - tree.edge_dist.begin(); TypeEdge sz = tree.edge_dist[leaf]; vector<size_t> st; { tree.make_parent(); while(leaf != root) { st.push_back(leaf); leaf = tree.parent[leaf].first; } st.push_back(root); } return make_pair(sz,st); } template<class TypeReroot> vector<TypeReroot> rerooting_impl(vector<TypeReroot> rerootdp,vector<TypeReroot> rerootparent) { for(size_t pa:order) for(auto& e:child[pa]) rerootdp[pa] = Operator::func_reroot_dp(rerootdp[pa],rerootdp[e.first]); for(size_t pa:reorder) { if(depth[pa]) rerootdp[pa] = Operator::func_reroot_dp(rerootdp[pa],rerootparent[pa]); size_t m = child[pa].size(); for(int j = 0; j < m && depth[pa]; ++j){ size_t ch = child[pa][j].first; rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],rerootparent[pa]); } if(m <= 1) continue; vector<TypeReroot> l(m),r(m); for(int j = 0; j < m; ++j) { size_t ch = child[pa][j].first; l[j] = rerootdp[ch]; r[j] = rerootdp[ch]; } for(int j = 1; j+1 < m; ++j) l[j] = Operator::func_reroot_merge(l[j],l[j-1]); for(int j = m-2; 0 <=j; --j) r[j] = Operator::func_reroot_merge(r[j],r[j+1]); size_t chl = child[pa].front().first; size_t chr = child[pa].back().first; rerootparent[chl] = Operator::func_reroot_dp(rerootparent[chl],r[1]); rerootparent[chr] = Operator::func_reroot_dp(rerootparent[chr],l[m-2]); for(int j = 1; j+1 < m; ++j) { size_t ch = child[pa][j].first; rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],l[j-1]); rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],r[j+1]); } } return rerootdp; } void make_eulertour() { dfs(reorder.front()); eulertour_range.resize(num); for(int i = 0; i < eulertour.size(); ++i) eulertour_range[eulertour[i]].second = i+1; for(int i = eulertour.size()-1; 0 <= i; --i) eulertour_range[eulertour[i]].first = i; } void make_heavy_light_decomposition(){ head.resize(num); hld.resize(num); iota(head.begin(),head.end(),0); for(size_t& pa:reorder) { pair<size_t,size_t> maxi = {0,num}; for(auto& p:child[pa]) maxi = max(maxi,{subtree_size[p.first],p.first}); if(maxi.first) head[maxi.second] = head[pa]; } stack<size_t> st_head,st_sub; size_t cnt = 0; //根に近い方から探索 for(size_t& root:reorder){ if(depth[root]) continue; //根をpush st_head.push(root); while(st_head.size()){ size_t h = st_head.top(); st_head.pop(); //部分木の根をpush st_sub.push(h); while (st_sub.size()){ size_t pa = st_sub.top(); st_sub.pop(); //部分木をカウントしていく hld[pa] = cnt++; //子を探索 for(auto& p:child[pa]) { //子のheadが親と同じなら、そのまま進む if(head[p.first]==head[pa]) st_sub.push(p.first); //そうじゃない場合は、そこから新しく部分木としてみなす else st_head.push(p.first); } } } } } //type 0: vertex, 1: edge vector<pair<size_t,size_t>> path(size_t u,size_t v,int type = 0) { vector<pair<size_t,size_t>> path; while(1){ if(hld[u]>hld[v]) swap(u,v); if(head[u]!=head[v]) { path.push_back({hld[head[v]],hld[v]}); v=parent[head[v]].first; } else { path.push_back({hld[u],hld[v]}); break; } } reverse(path.begin(),path.end()); if(type) path.front().first++; return path; } vector<size_t> head; public: vector<size_t> depth; vector<size_t> order; vector<size_t> reorder; vector<size_t> subtree_size; vector<pair<size_t,TypeEdge>> parent; vector<vector<pair<size_t,TypeEdge>>> child; vector<TypeEdge> edge_dist; vector<array<pair<size_t,TypeEdge>,Operator::bit>> ancestor; vector<size_t> eulertour; vector<pair<size_t,size_t>> eulertour_range; vector<size_t> hld; /** * O(N) builder */ static TreeBuilder<Operator> builder(Graph<TypeEdge>& graph) { return TreeBuilder<Operator>(graph);} /** * O(logN) after make_ancestor * return {lca,lca_dist} l and r must be connected */ pair<size_t,TypeEdge> lca(size_t l, size_t r) {return lca_impl(l,r);} /** * O(N) anytime * return {diameter size,diameter set} */ pair<TypeEdge,vector<size_t>> diameter(void){return diameter_impl();} /** * O(N) after make_child */ template<class TypeReroot> vector<TypeReroot> rerooting(const vector<TypeReroot>& rerootdp,const vector<TypeReroot>& rerootparent) {return rerooting_impl(rerootdp,rerootparent);} /** * O(logN) */ vector<pair<size_t,size_t>> vertex_set_on_path(size_t u, size_t v) {return path(u,v,0);} /** * O(logN) */ vector<pair<size_t,size_t>> edge_set_on_path(size_t u, size_t v) {return path(u,v,1);} }; template<class Operator> class TreeBuilder { bool is_root_made =false; bool is_child_made =false; bool is_parent_made=false; bool is_subtree_size_made=false; public: using TypeEdge = typename Operator::TypeEdge; TreeBuilder(Graph<TypeEdge>& g):tree(g){} TreeBuilder& root(const int rt) { is_root_made=true; tree.make_root(rt); return *this;} TreeBuilder& root() { is_root_made=true; tree.make_root(); return *this;} TreeBuilder& child() { assert(is_root_made); is_child_made=true; tree.make_child(); return *this;} TreeBuilder& parent() { assert(is_root_made); is_parent_made=true; tree.make_parent(); return *this;} TreeBuilder& subtree_size() { assert(is_child_made); is_subtree_size_made=true; tree.make_subtree_size(); return *this;} TreeBuilder& ancestor() { assert(is_parent_made); tree.make_ancestor(); return *this;} TreeBuilder& eulertour() { assert(is_child_made); tree.make_eulertour(); return *this;} TreeBuilder& heavy_light_decomposition() { assert(is_subtree_size_made); assert(is_parent_made); tree.make_heavy_light_decomposition(); return *this;} Tree<Operator>&& build() {return move(tree);} private: Tree<Operator> tree; }; template<class T> struct TreeOperator{ using TypeEdge = T; inline static constexpr size_t bit = 20; inline static constexpr TypeEdge unit_edge = 0; inline static constexpr TypeEdge unit_lca_edge = 0; inline static constexpr TypeEdge func_edge_merge(const TypeEdge& parent,const TypeEdge& w){return parent+w;} inline static constexpr pair<size_t,TypeEdge> func_lca_edge_merge(const pair<size_t,TypeEdge>& l,const pair<size_t,TypeEdge>& r){return make_pair(l.first,l.second+r.second);} template<class TypeReroot> inline static constexpr TypeReroot func_reroot_dp(const TypeReroot& l,const TypeReroot& r) {return {l.first+r.first+r.second,l.second+r.second};} template<class TypeReroot> inline static constexpr TypeReroot func_reroot_merge(const TypeReroot& l,const TypeReroot& r) {return {l.first+r.first,l.second+r.second};} }; /* * @title SegmentTree - 非再帰抽象化セグメント木 * @docs md/segment/SegmentTree.md */ template<class Operator> class SegmentTree { using TypeNode = typename Operator::TypeNode; size_t length; size_t num; vector<TypeNode> node; vector<pair<int,int>> range; inline void build() { for (int i = length - 1; i >= 0; --i) node[i] = Operator::func_node(node[(i<<1)+0],node[(i<<1)+1]); range.resize(2 * length); for (int i = 0; i < length; ++i) range[i+length] = make_pair(i,i+1); for (int i = length - 1; i >= 0; --i) range[i] = make_pair(range[(i<<1)+0].first,range[(i<<1)+1].second); } public: //unitで初期化 SegmentTree(const size_t num): num(num) { for (length = 1; length <= num; length *= 2); node.resize(2 * length, Operator::unit_node); build(); } //vectorで初期化 SegmentTree(const vector<TypeNode> & vec) : num(vec.size()) { for (length = 1; length <= vec.size(); length *= 2); node.resize(2 * length, Operator::unit_node); for (int i = 0; i < vec.size(); ++i) node[i + length] = vec[i]; build(); } //同じinitで初期化 SegmentTree(const size_t num, const TypeNode init) : num(num) { for (length = 1; length <= num; length *= 2); node.resize(2 * length, Operator::unit_node); for (int i = 0; i < length; ++i) node[i+length] = init; build(); } //[idx,idx+1) void update(size_t idx, const TypeNode var) { if(idx < 0 || length <= idx) return; idx += length; node[idx] = Operator::func_merge(node[idx],var); while(idx >>= 1) node[idx] = Operator::func_node(node[(idx<<1)+0],node[(idx<<1)+1]); } //[l,r) TypeNode get(int l, int r) { if (l < 0 || length <= l || r < 0 || length < r) return Operator::unit_node; TypeNode vl = Operator::unit_node, vr = Operator::unit_node; for(l += length, r += length; l < r; l >>=1, r >>=1) { if(l&1) vl = Operator::func_node(vl,node[l++]); if(r&1) vr = Operator::func_node(node[--r],vr); } return Operator::func_node(vl,vr); } //range[l,r) return [l,r] search max right int prefix_binary_search(int l, int r, TypeNode var) { assert(0 <= l && l < length && 0 < r && r <= length); TypeNode ret = Operator::unit_node; size_t off = l; for(size_t idx = l+length; idx < 2*length && off < r; ){ if(range[idx].second<=r && !Operator::func_check(Operator::func_node(ret,node[idx]),var)) { ret = Operator::func_node(ret,node[idx]); off = range[idx++].second; if(!(idx&1)) idx >>= 1; } else{ idx <<=1; } } return off; } //range(l,r] return [l,r] search max left int suffix_binary_search(const int l, const int r, const TypeNode var) { assert(-1 <= l && l < (int)length-1 && 0 <= r && r < length); TypeNode ret = Operator::unit_node; int off = r; for(size_t idx = r+length; idx < 2*length && l < off; ){ if(l < range[idx].first && !Operator::func_check(Operator::func_node(node[idx],ret),var)) { ret = Operator::func_node(node[idx],ret); off = range[idx--].first-1; if(idx&1) idx >>= 1; } else{ idx = (idx<<1)+1; } } return off; } void print(){ // cout << "node" << endl; // for(int i = 1,j = 1; i < 2*length; ++i) { // cout << node[i] << " "; // if(i==((1<<j)-1) && ++j) cout << endl; // } cout << "vector" << endl; cout << "{ " << get(0,1); for(int i = 1; i < length; ++i) cout << ", " << get(i,i+1); cout << " }" << endl; } }; //一点更新 区間最小 template<class T> struct NodeMulPointUpdate { using TypeNode = T; inline static TypeNode unit_node = Matrix<modint,2,2>::E(); inline static constexpr TypeNode func_node(TypeNode l,TypeNode r){return l*r;} inline static constexpr TypeNode func_merge(TypeNode l,TypeNode r){return r;} inline static constexpr bool func_check(TypeNode nodeVal,TypeNode var){return var > nodeVal;} }; using matrix = Matrix<modint,2,2>; int main() { SPEED int N; cin >> N; Graph<int> g(N); vector<pair<size_t,size_t>> vp(N-1); for(int i = 0; i < N-1; ++i) { int u,v; cin >> u >> v; g.make_bidirectional_edge(u,v,1); vp[i]={u,v}; } auto tree = Tree<TreeOperator<int>>::builder(g).root(0).child().subtree_size().parent().heavy_light_decomposition().build(); SegmentTree<NodeMulPointUpdate<matrix>> seg(N); int Q; cin >> Q; while(Q--) { char c; cin >> c; if(c == 'x'){ int i; cin >> i; modint a,b,c,d; cin >> a >> b >> c >> d; matrix x; x[0]={a,b}; x[1]={c,d}; int l = vp[i].first, r = vp[i].second; l = tree.hld[l],r = tree.hld[r]; seg.update(max(l,r),x); } else{ int l,r; cin >> l >> r; auto vp = tree.edge_set_on_path(l,r); matrix ans = matrix::E(); for(auto p:vp){ ans *= seg.get(p.first,p.second+1); } cout << ans[0][0] << " " << ans[0][1] << " " << ans[1][0] << " " << ans[1][1] << endl; } } return 0; }