結果

問題 No.310 2文字しりとり
ユーザー rickytheta
提出日時 2015-12-12 11:19:48
言語 C++11(廃止可能性あり)
(gcc 13.3.0)
結果
AC  
実行時間 802 ms / 6,000 ms
コード長 6,457 bytes
コンパイル時間 1,863 ms
コンパイル使用メモリ 179,020 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-15 08:38:10
合計ジャッジ時間 7,085 ms
ジャッジサーバーID
(参考情報)
judge6 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 28
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef complex<double> P;
typedef pair<int,int> pii;
#define REP(i,n) for(ll i=0;i<n;++i)
#define REPR(i,n) for(ll i=1;i<n;++i)
#define FOR(i,a,b) for(ll i=a;i<b;++i)
#define DEBUG(x) cout<<#x<<": "<<x<<endl
#define DEBUG_VEC(v) cout<<#v<<":";REP(i,v.size())cout<<" "<<v[i];cout<<endl
#define ALL(a) (a).begin(),(a).end()
#define MOD (ll)(1e9+7)
#define ADD(a,b) a=((a)+(b))%MOD
#define FIX(a) ((a)%MOD+MOD)%MOD
#define V_MAX 4010
struct UF{
vi data;
UF(int size):data(size,-1){}
int root(int a){
return data[a]<0 ? a : data[a]=root(data[a]);
}
void unite(int a,int b){
a=root(a);
b=root(b);
if(a!=b){
if(data[b]<data[a])swap(a,b);
data[a] += data[b];
data[b] = a;
}
}
bool same(int a,int b){
return root(a) == root(b);
}
int size(int a){
return -data[root(a)];
}
};
ll fact[V_MAX];
void fact_init(){
fact[0] = 1;
REPR(i,V_MAX){
fact[i] = i*fact[i-1];
fact[i] %= MOD;
}
}
int inv(ll a){
ll t = MOD-2;
ll res = 1;
while(t){
if(t&1==1){
res = res*a%MOD;
}
t >>= 1;
a = a*a%MOD;
}
return res;
}
vl berlekamp_massey(vl s){
ll N = s.size();
ll L=0,m=1,b=1,Bsz=1;
vl C(N+1),B(1);
C[0]=1;
B[0]=1;
REP(n,N){
ll d = s[n];
REPR(i,L+1) d += C[i]*s[n-i]%MOD;
d %= MOD;
if(d==0){
++m;
}else if(2*L <= n){
vl T;REP(i,L+1)T.push_back(C[i]);
ll rate = (MOD-(d*inv(b))%MOD)%MOD;
REP(i,Bsz) C[m+i] = (C[m+i]+rate*B[i])%MOD;
L = n+1-L;
B = T;
Bsz = B.size();
b = d;
m = 1;
}else{
ll rate = (MOD-(d*inv(b))%MOD)%MOD;
REP(i,Bsz) C[m+i] = (C[m+i]+rate*B[i])%MOD;
++m;
}
}
C.resize(L+1);
return C;
}
typedef unsigned long ul;
ul xorshift(){
static ul x = 123456789,
y = 362436069,
z = 521288629,
w = 88675123;
ul t;
t = x^(x<<11);
x = y;
y = z;
z = w;
return w = (w^(w>>19))^(t^(t>>8));
}
//
// -1
// -1(0)M
ll det(ll n,vl dmat,vector<pii> edges,ll beg,ll end){
if(n<=0)return 1;
vl b(n),u(n);
vl D(n); // diagonal matrix
REP(i,n)while(b[i]==0)b[i] = xorshift()%MOD;
REP(i,n)while(u[i]==0)u[i] = xorshift()%MOD;
REP(i,n)while(D[i]==0)D[i] = xorshift()%MOD;
vl a(2*n);
a[0]=0;
REP(j,n)a[0]+=u[j]*b[j]%MOD;
a[0]%=MOD;
REPR(i,2*n){
// a_i = u^T * ( mat*D * (mat*D)^(i-1) * b)
//
vl mb(n);
ll sum = 0;
REP(j,n){
b[j] = (b[j]*D[j])%MOD;
sum = (sum+b[j])%MOD;
}
REP(j,n){
mb[j] = FIX(b[j]*dmat[j]-sum);
}
if(beg!=-1 && end!=-1 && beg<n && end<n){
mb[end] = FIX(mb[end]-b[beg]);
}
REP(j,edges.size()){
pii e = edges[j];
if(e.first!=-1 && e.second!=-1 && e.first<n && e.second<n){
mb[e.first] = FIX(mb[e.first]+b[e.second]);
}
}
b = mb;
a[i] = 0;
REP(j,n){
a[i] = FIX(a[i]+u[j]*b[j]);
}
}
vl minimal = berlekamp_massey(a);
if(a.size()<n+1)return det(n,dmat,edges,beg,end);
ll ret = 1;
ll detd = 1;
REP(i,n)detd = (detd*D[i])%MOD;
ret = minimal[n] * inv(detd) % MOD;
if(n%2==1)ret = MOD-ret;
ret %= MOD;
return ret;
}
// ll determinant(int dim,vector<vl> mat){
// if(dim==0)return 1;
// REPR(i,dim)REP(j,dim){
// mat[i][j] -= mat[0][j];
// }
// REP(i,dim)REP(j,dim)mat[i][j] = FIX(mat[i][j]);
// ll result = 1;
// REP(i,dim-1){
// bool flag = false;
// FOR(j,i,dim){
// if(mat[j][i]!=0){
// if(i!=j){
// swap(mat[j],mat[i]);
// result = (-result + MOD)%MOD;
// }
// flag = true;
// break;
// }
// }
// if(!flag)return 0;
// ll iv = inv(mat[i][i]);
// FOR(j,i+1,dim){
// if(mat[j][i]==0)continue;
// ll rate = mat[j][i] * iv;
// rate %= MOD;
// FOR(k,i,dim){
// mat[j][k] -= (mat[i][k]*rate)%MOD;
// mat[j][k] = FIX(mat[j][k]);
// }
// }
// result *= mat[i][i];
// result %= MOD;
// }
// result *= mat[dim-1][dim-1];
// result %= MOD;
// return result;
// }
ll solve(){
xorshift();
int n,m;
cin >> n >> m;
vi indeg(n,n),outdeg(n,n);
vector<pii> edges(m);
REP(i,m){
int a,b;
cin >> a >> b;
--a;--b;
edges[i] = make_pair(a,b);
outdeg[a]--;
indeg[b]--;
}
// no edge
if(n*n==m)return 1;
// check eulerian
int beg=-1,end=-1;
REP(i,n){
if(indeg[i]==outdeg[i])continue;
if(beg==-1 && indeg[i]==outdeg[i]-1){
beg=i;
continue;
}
if(end==-1 && indeg[i]-1==outdeg[i]){
end=i;
continue;
}
return 0;
}
if(beg!=-1 && end==-1)return 0;
if(beg==-1 && end!=-1)return 0;
if(beg!=-1 && end!=-1){
outdeg[end]++;
indeg[beg]++;
}
// check & delete isolation
sort(ALL(edges));
UF uf = UF(n);
int root = -1;
int iter = 0;
REP(i,n){
if(root==-1 && indeg[i]>0) root = i;
REP(j,n){
if(iter<m && edges[iter].first == i && edges[iter].second == j){
++iter;
}else{
uf.unite(i,j);
}
}
}
if(root==-1)return 1;
int mp[n];
int t = 0;
vl deg(n);
REP(i,n){
if(!uf.same(root,i)){
if(indeg[i]>0){
return 0;
}
mp[i] = -1;
}else{
mp[i] = t;
deg[t] = outdeg[i];
++t;
}
}
REP(i,m){
edges[i].first = mp[edges[i].first];
edges[i].second = mp[edges[i].second];
}
if(beg!=-1 && end!=-1){
beg = mp[beg];
end = mp[end];
if(beg==-1 || end==-1)return 0;
}
// vector<vl> Q(t,vl(t,-1));
// REP(i,t){
// Q[i][i] += deg[i];
// }
// REP(i,m){
// if(edges[i].first != -1 && edges[i].second != -1)
// Q[edges[i].first][edges[i].second] += 1;
// }
// if(beg!=-1 && end!=-1){
// Q[end][beg] -= 1;
// }
// BEST theorem
// ec(G) = t_w(G) PI_{v in V}(deg(v)-1)!
// matrix tree theorem
// t_w(G) = (determinant of Laplacian matrix)
fact_init();
ll result = 1;
REP(i,t){
result *= fact[deg[i]-1];
result %= MOD;
}
ll dt = det(t-1,deg,edges,beg,end);
result *= dt;
result %= MOD;
if(beg==-1 && end==-1){
result *= n*n-m;
result %= MOD;
}
return result;
}
int main(){
// counting eulerian circuit
cout << solve() << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0