結果

問題 No.1488 Max Score of the Tree
ユーザー ningenMe
提出日時 2021-04-23 22:41:22
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 37 ms / 2,000 ms
コード長 17,084 bytes
コンパイル時間 5,469 ms
コンパイル使用メモリ 221,732 KB
最終ジャッジ日時 2025-01-21 00:13:52
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 29
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using int128 = __int128_t;
using int64 = long long;
using int32 = int;
using uint128 = __uint128_t;
using uint64 = unsigned long long;
using uint32 = unsigned int;
#define ALL(obj) (obj).begin(),(obj).end()
template<class T> using priority_queue_reverse = priority_queue<T,vector<T>,greater<T>>;
constexpr int64 MOD = 1'000'000'000LL + 7; //'
constexpr int64 MOD2 = 998244353;
constexpr int64 HIGHINF = 1'000'000'000'000'000'000LL;
constexpr int64 LOWINF = 1'000'000'000'000'000LL; //'
constexpr long double PI = 3.1415926535897932384626433L;
template <class T> vector<T> multivector(size_t N,T init){return vector<T>(N,init);}
template <class... T> auto multivector(size_t N,T... t){return vector<decltype(multivector(t...))>(N,multivector(t...));}
template <class T> void corner(bool flg, T hoge) {if (flg) {cout << hoge << endl; exit(0);}}
template <class T, class U>ostream &operator<<(ostream &o, const map<T, U>&obj) {o << "{"; for (auto &x : obj) o << " {" << x.first << " : " << x
    .second << "}" << ","; o << " }"; return o;}
template <class T>ostream &operator<<(ostream &o, const set<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj
    .begin() ? ", " : "") << *itr; o << "}"; return o;}
template <class T>ostream &operator<<(ostream &o, const multiset<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr !
    = obj.begin() ? ", " : "") << *itr; o << "}"; return o;}
template <class T>ostream &operator<<(ostream &o, const vector<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "")
    << obj[i]; o << "}"; return o;}
template <class T>ostream &operator<<(ostream &o, const deque<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") <<
    obj[i]; o << "}"; return o;}
template <class T, class U>ostream &operator<<(ostream &o, const pair<T, U>&obj) {o << "{" << obj.first << ", " << obj.second << "}"; return o;}
void print(void) {cout << endl;}
template <class Head> void print(Head&& head) {cout << head;print();}
template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) {cout << head << " ";print(forward<Tail>(tail)...);}
template <class T> void chmax(T& a, const T b){a=max(a,b);}
template <class T> void chmin(T& a, const T b){a=min(a,b);}
vector<string> split(const string &str, const char delemiter) {vector<string> res;stringstream ss(str);string buffer; while( getline(ss, buffer,
    delemiter) ) res.push_back(buffer); return res;}
inline constexpr int msb(int x) {return x?31-__builtin_clz(x):-1;}
inline constexpr int64 ceil_div(const int64 a,const int64 b) {return (a+(b-1))/b;}// return ceil(a/b)
void YN(bool flg) {cout << (flg ? "YES" : "NO") << endl;}
void Yn(bool flg) {cout << (flg ? "Yes" : "No") << endl;}
void yn(bool flg) {cout << (flg ? "yes" : "no") << endl;}
/*
* @title Graph
* @docs md/graph/Graph.md
*/
template<class T> class Graph{
private:
const size_t N,H,W;
public:
vector<vector<pair<size_t,T>>> edges;
Graph(const size_t N):H(-1),W(-1),N(N), edges(N) {}
Graph(const size_t H, const size_t W):H(H),W(W),N(H*W), edges(H*W) {}
inline void make_edge(size_t from, size_t to, T w) {
edges[from].emplace_back(to,w);
}
//{from_y,from_x} -> {to_y,to_x}
inline void make_edge(pair<size_t,size_t> from, pair<size_t,size_t> to, T w) {
make_edge(from.first*W+from.second,to.first*W+to.second,w);
}
inline void make_bidirectional_edge(size_t from, size_t to, T w) {
make_edge(from,to,w);
make_edge(to,from,w);
}
inline void make_bidirectional_edge(pair<size_t,size_t> from, pair<size_t,size_t> to, T w) {
make_edge(from.first*W+from.second,to.first*W+to.second,w);
make_edge(to.first*W+to.second,from.first*W+from.second,w);
}
inline size_t size(){return N;}
inline size_t idx(pair<size_t,size_t> yx){return yx.first*W+yx.second;}
};
/*
* @title Tree -
* @docs md/graph/Tree.md
*/
template<class Operator> class TreeBuilder;
template<class Operator> class Tree {
private:
using TypeEdge = typename Operator::TypeEdge;
size_t num;
size_t ord;
Graph<TypeEdge>& g;
friend TreeBuilder<Operator>;
Tree(Graph<TypeEdge>& graph):
g(graph),
num(graph.size()),
depth(graph.size(),-1),
order(graph.size()),
edge_dist(graph.size()){
}
//for make_depth
void dfs(int curr, int prev){
for(const auto& e:g.edges[curr]){
const int& next = e.first;
if(next==prev) continue;
depth[next] = depth[curr] + 1;
edge_dist[next] = Operator::func_edge_merge(edge_dist[curr],e.second);
dfs(next,curr);
order[ord++] = next;
}
}
//for make_eulertour
void dfs(int from){
eulertour.push_back(from);
for(auto& e:child[from]){
int to = e.first;
dfs(to);
eulertour.push_back(from);
}
}
void make_root(const int root) {
depth[root] = 0;
edge_dist[root] = Operator::unit_edge;
ord = 0;
dfs(root,-1);
order[ord++] = root;
reverse_copy(order.begin(),order.end(),back_inserter(reorder));
}
void make_root() {
ord = 0;
for(int i=0;i<num;++i) {
if(depth[i]!=-1) continue;
depth[i] = 0;
edge_dist[i] = Operator::unit_edge;
dfs(i,-1);
order[ord++] = i;
}
reverse_copy(order.begin(),order.end(),back_inserter(reorder));
}
void make_child(const int root = 0) {
child.resize(num);
for (size_t i = 0; i < num; ++i) for (auto& e : g.edges[i]) if (depth[i] < depth[e.first]) child[i].push_back(e);
}
void make_subtree_size() {
subtree_size.resize(num,1);
for (size_t i:order) for (auto e : child[i]) subtree_size[i] += subtree_size[e.first];
}
void make_parent() {
parent.resize(num,make_pair(num,Operator::unit_edge));
for (size_t i = 0; i < num; ++i) for (auto& e : g.edges[i]) if (depth[i] > depth[e.first]) parent[i] = e;
}
void make_ancestor() {
ancestor.resize(num);
for (size_t i = 0; i < num; ++i) ancestor[i][0] = (parent[i].first!=num?parent[i]:make_pair(i,Operator::unit_lca_edge));
for (size_t j = 1; j < Operator::bit; ++j) {
for (size_t i = 0; i < num; ++i) {
size_t k = ancestor[i][j - 1].first;
ancestor[i][j] = Operator::func_lca_edge_merge(ancestor[k][j - 1],ancestor[i][j - 1]);
}
}
}
pair<size_t,TypeEdge> lca_impl(size_t l, size_t r) {
if (depth[l] < depth[r]) swap(l, r);
int diff = depth[l] - depth[r];
auto ancl = make_pair(l,Operator::unit_lca_edge);
auto ancr = make_pair(r,Operator::unit_lca_edge);
for (int j = 0; j < Operator::bit; ++j) {
if (diff & (1 << j)) ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][j],ancl);
}
if(ancl.first==ancr.first) return ancl;
for (int j = Operator::bit - 1; 0 <= j; --j) {
if(ancestor[ancl.first][j].first!=ancestor[ancr.first][j].first) {
ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][j],ancl);
ancr = Operator::func_lca_edge_merge(ancestor[ancr.first][j],ancr);
}
}
ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][0],ancl);
ancr = Operator::func_lca_edge_merge(ancestor[ancr.first][0],ancr);
return Operator::func_lca_edge_merge(ancl,ancr);
}
pair<TypeEdge,vector<size_t>> diameter_impl() {
Tree tree = Tree::builder(g).build();
size_t root = 0;
{
tree.make_root(0);
}
root = max_element(tree.edge_dist.begin(),tree.edge_dist.end()) - tree.edge_dist.begin();
{
tree.make_root(root);
}
size_t leaf = max_element(tree.edge_dist.begin(),tree.edge_dist.end()) - tree.edge_dist.begin();
TypeEdge sz = tree.edge_dist[leaf];
vector<size_t> st;
{
tree.make_parent();
while(leaf != root) {
st.push_back(leaf);
leaf = tree.parent[leaf].first;
}
st.push_back(root);
}
return make_pair(sz,st);
}
template<class TypeReroot> vector<TypeReroot> rerooting_impl(vector<TypeReroot> rerootdp,vector<TypeReroot> rerootparent) {
for(size_t pa:order) for(auto& e:child[pa]) rerootdp[pa] = Operator::func_reroot_dp(rerootdp[pa],rerootdp[e.first]);
for(size_t pa:reorder) {
if(depth[pa]) rerootdp[pa] = Operator::func_reroot_dp(rerootdp[pa],rerootparent[pa]);
size_t m = child[pa].size();
for(int j = 0; j < m && depth[pa]; ++j){
size_t ch = child[pa][j].first;
rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],rerootparent[pa]);
}
if(m <= 1) continue;
vector<TypeReroot> l(m),r(m);
for(int j = 0; j < m; ++j) {
size_t ch = child[pa][j].first;
l[j] = rerootdp[ch];
r[j] = rerootdp[ch];
}
for(int j = 1; j+1 < m; ++j) l[j] = Operator::func_reroot_merge(l[j],l[j-1]);
for(int j = m-2; 0 <=j; --j) r[j] = Operator::func_reroot_merge(r[j],r[j+1]);
size_t chl = child[pa].front().first;
size_t chr = child[pa].back().first;
rerootparent[chl] = Operator::func_reroot_dp(rerootparent[chl],r[1]);
rerootparent[chr] = Operator::func_reroot_dp(rerootparent[chr],l[m-2]);
for(int j = 1; j+1 < m; ++j) {
size_t ch = child[pa][j].first;
rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],l[j-1]);
rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],r[j+1]);
}
}
return rerootdp;
}
void make_eulertour() {
dfs(reorder.front());
eulertour_range.resize(num);
for(int i = 0; i < eulertour.size(); ++i) eulertour_range[eulertour[i]].second = i+1;
for(int i = eulertour.size()-1; 0 <= i; --i) eulertour_range[eulertour[i]].first = i;
}
void make_heavy_light_decomposition(){
head.resize(num);
hld.resize(num);
iota(head.begin(),head.end(),0);
for(size_t& pa:reorder) {
pair<size_t,size_t> maxi = {0,num};
for(auto& p:child[pa]) maxi = max(maxi,{subtree_size[p.first],p.first});
if(maxi.first) head[maxi.second] = head[pa];
}
stack<size_t> st_head,st_sub;
size_t cnt = 0;
//
for(size_t& root:reorder){
if(depth[root]) continue;
//push
st_head.push(root);
while(st_head.size()){
size_t h = st_head.top();
st_head.pop();
//push
st_sub.push(h);
while (st_sub.size()){
size_t pa = st_sub.top();
st_sub.pop();
//
hld[pa] = cnt++;
//
for(auto& p:child[pa]) {
//head
if(head[p.first]==head[pa]) st_sub.push(p.first);
//
else st_head.push(p.first);
}
}
}
}
}
//type 0: vertex, 1: edge
vector<pair<size_t,size_t>> path_impl(size_t u,size_t v,int type = 0) {
vector<pair<size_t,size_t>> path;
while(1){
if(hld[u]>hld[v]) swap(u,v);
if(head[u]!=head[v]) {
path.push_back({hld[head[v]],hld[v]});
v=parent[head[v]].first;
}
else {
path.push_back({hld[u],hld[v]});
break;
}
}
reverse(path.begin(),path.end());
if(type) path.front().first++;
return path;
}
pair<vector<pair<size_t,size_t>>,vector<pair<size_t,size_t>>> ordered_path_impl(size_t u,size_t v,int type = 0) {
vector<pair<size_t,size_t>> path_lca_to_u;
vector<pair<size_t,size_t>> path_lca_to_v;
while(1){
if(head[u] == head[v]) {
if(depth[u] < depth[v]) path_lca_to_v.emplace_back(hld[u]+type,hld[v]);
else path_lca_to_u.emplace_back(hld[v]+type,hld[u]);
break;
}
else if(hld[u] < hld[v]) {
path_lca_to_v.emplace_back(hld[head[v]],hld[v]);
v = parent[head[v]].first;
}
else if(hld[u] > hld[v]) {
path_lca_to_u.emplace_back(hld[head[u]],hld[u]);
u = parent[head[u]].first;
}
}
reverse(path_lca_to_v.begin(),path_lca_to_v.end());
return {path_lca_to_u,path_lca_to_v};
}
size_t lca_idx_impl(size_t u,size_t v){
while(1){
if(hld[u]>hld[v]) swap(u,v);
if(head[u]==head[v]) return u;
v=parent[head[v]].first;
}
}
vector<size_t> head;
public:
vector<size_t> depth;
vector<size_t> order;
vector<size_t> reorder;
vector<size_t> subtree_size;
vector<pair<size_t,TypeEdge>> parent;
vector<vector<pair<size_t,TypeEdge>>> child;
vector<TypeEdge> edge_dist;
vector<array<pair<size_t,TypeEdge>,Operator::bit>> ancestor;
vector<size_t> eulertour;
vector<pair<size_t,size_t>> eulertour_range;
vector<size_t> hld;
/**
* O(N) builder
*/
static TreeBuilder<Operator> builder(Graph<TypeEdge>& graph) { return TreeBuilder<Operator>(graph);}
/**
* O(logN) after make_ancestor
* return {lca,lca_dist} l and r must be connected
*/
pair<size_t,TypeEdge> lca(size_t l, size_t r) {return lca_impl(l,r);}
/**
* O(N) anytime
* return {diameter size,diameter set}
*/
pair<TypeEdge,vector<size_t>> diameter(void){return diameter_impl();}
/**
* O(N) after make_child
*/
template<class TypeReroot> vector<TypeReroot> rerooting(const vector<TypeReroot>& rerootdp,const vector<TypeReroot>& rerootparent) {return
        rerooting_impl(rerootdp,rerootparent);}
/**
* O(logN)
*/
vector<pair<size_t,size_t>> vertex_set_on_path(size_t u, size_t v) {return path_impl(u,v,0);}
/**
/**
* O(logN)
*/
vector<pair<size_t,size_t>> edge_set_on_path(size_t u, size_t v) {return path_impl(u,v,1);}
/**
* O(logN)
* {lca to u path,lca to v path}
*/
pair<vector<pair<size_t,size_t>>,vector<pair<size_t,size_t>>> vertex_ordered_set_on_path(size_t u, size_t v) {return ordered_path_impl(u,v,0);}
/**
* O(logN)
* {lca to u path,lca to v path}
*/
pair<vector<pair<size_t,size_t>>,vector<pair<size_t,size_t>>> edge_ordered_set_on_path(size_t u, size_t v) {return ordered_path_impl(u,v,1);}
/**
* O(logN) ancestorlcaidx
*/
size_t lca_idx(size_t u, size_t v) {return lca_idx_impl(u,v);}
};
template<class Operator> class TreeBuilder {
bool is_root_made =false;
bool is_child_made =false;
bool is_parent_made=false;
bool is_subtree_size_made=false;
public:
using TypeEdge = typename Operator::TypeEdge;
TreeBuilder(Graph<TypeEdge>& g):tree(g){}
TreeBuilder& root(const int rt) { is_root_made=true; tree.make_root(rt); return *this;}
TreeBuilder& root() { is_root_made=true; tree.make_root(); return *this;}
TreeBuilder& child() { assert(is_root_made); is_child_made=true; tree.make_child(); return *this;}
TreeBuilder& parent() { assert(is_root_made); is_parent_made=true; tree.make_parent(); return *this;}
TreeBuilder& subtree_size() { assert(is_child_made); is_subtree_size_made=true; tree.make_subtree_size(); return *this;}
TreeBuilder& ancestor() { assert(is_parent_made); tree.make_ancestor(); return *this;}
TreeBuilder& eulertour() { assert(is_child_made); tree.make_eulertour(); return *this;}
TreeBuilder& heavy_light_decomposition() { assert(is_subtree_size_made); assert(is_parent_made); tree.make_heavy_light_decomposition(); return
        *this;}
Tree<Operator>&& build() {return move(tree);}
private:
Tree<Operator> tree;
};
template<class T> struct TreeOperator{
using TypeEdge = T;
inline static constexpr size_t bit = 20;
inline static constexpr TypeEdge unit_edge = 0;
inline static constexpr TypeEdge unit_lca_edge = 0;
inline static constexpr TypeEdge func_edge_merge(const TypeEdge& parent,const TypeEdge& w){return parent+w;}
inline static constexpr pair<size_t,TypeEdge> func_lca_edge_merge(const pair<size_t,TypeEdge>& l,const pair<size_t,TypeEdge>& r){return make_pair
        (l.first,l.second+r.second);}
template<class TypeReroot> inline static constexpr TypeReroot func_reroot_dp(const TypeReroot& l,const TypeReroot& r) {return {l.first+r.first+r
        .second,l.second+r.second};}
template<class TypeReroot> inline static constexpr TypeReroot func_reroot_merge(const TypeReroot& l,const TypeReroot& r) {return {l.first+r.first
        ,l.second+r.second};}
};
//auto tree = Tree<TreeOperator<int>>::builder(g).build();
/**
* @url
* @est
*/
int main() {
cin.tie(0);ios::sync_with_stdio(false);
int N,K; cin >> N >> K;
Graph<int> g(N);
for(int i=0;i<N-1;++i) {
int a,b,c; cin >> a >> b >> c;
a--,b--;
g.make_bidirectional_edge(a,b,c);
}
auto tree = Tree<TreeOperator<int>>::builder(g).root(0).parent().child().build();
vector<int64> cnt(N,0);
int sum = 0;
vector<int> cost,value;
for(int pa:tree.order) {
if(tree.child[pa].empty()) {
cnt[pa]++;
sum += tree.edge_dist[pa];
}
for(auto p:tree.child[pa]) {
int ch = p.first;
cnt[pa] += cnt[ch];
}
auto w = tree.parent[pa].second;
if(tree.depth[pa]) {
value.push_back(cnt[pa]*w);
cost.push_back(w);
}
}
vector<int> dp(K+1,0),tp(K+1,0);
for(int i=0;i<N-1;++i) {
for(int j=0;j<=K;++j) tp[j]=0;
for(int j=0;j<=K;++j) {
if(j+cost[i]<=K)chmax(tp[j+cost[i]],dp[j]+value[i]);
chmax(tp[j],dp[j]);
}
swap(tp,dp);
}
int ans = sum + (*max_element(ALL(dp)));
cout << ans << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0