結果
問題 | No.1488 Max Score of the Tree |
ユーザー |
|
提出日時 | 2021-04-23 22:41:22 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 37 ms / 2,000 ms |
コード長 | 17,084 bytes |
コンパイル時間 | 5,469 ms |
コンパイル使用メモリ | 221,732 KB |
最終ジャッジ日時 | 2025-01-21 00:13:52 |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 29 |
ソースコード
#include <bits/stdc++.h>using namespace std;using int128 = __int128_t;using int64 = long long;using int32 = int;using uint128 = __uint128_t;using uint64 = unsigned long long;using uint32 = unsigned int;#define ALL(obj) (obj).begin(),(obj).end()template<class T> using priority_queue_reverse = priority_queue<T,vector<T>,greater<T>>;constexpr int64 MOD = 1'000'000'000LL + 7; //'constexpr int64 MOD2 = 998244353;constexpr int64 HIGHINF = 1'000'000'000'000'000'000LL;constexpr int64 LOWINF = 1'000'000'000'000'000LL; //'constexpr long double PI = 3.1415926535897932384626433L;template <class T> vector<T> multivector(size_t N,T init){return vector<T>(N,init);}template <class... T> auto multivector(size_t N,T... t){return vector<decltype(multivector(t...))>(N,multivector(t...));}template <class T> void corner(bool flg, T hoge) {if (flg) {cout << hoge << endl; exit(0);}}template <class T, class U>ostream &operator<<(ostream &o, const map<T, U>&obj) {o << "{"; for (auto &x : obj) o << " {" << x.first << " : " << x.second << "}" << ","; o << " }"; return o;}template <class T>ostream &operator<<(ostream &o, const set<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;}template <class T>ostream &operator<<(ostream &o, const multiset<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;}template <class T>ostream &operator<<(ostream &o, const vector<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "")<< obj[i]; o << "}"; return o;}template <class T>ostream &operator<<(ostream &o, const deque<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") <<obj[i]; o << "}"; return o;}template <class T, class U>ostream &operator<<(ostream &o, const pair<T, U>&obj) {o << "{" << obj.first << ", " << obj.second << "}"; return o;}void print(void) {cout << endl;}template <class Head> void print(Head&& head) {cout << head;print();}template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) {cout << head << " ";print(forward<Tail>(tail)...);}template <class T> void chmax(T& a, const T b){a=max(a,b);}template <class T> void chmin(T& a, const T b){a=min(a,b);}vector<string> split(const string &str, const char delemiter) {vector<string> res;stringstream ss(str);string buffer; while( getline(ss, buffer,delemiter) ) res.push_back(buffer); return res;}inline constexpr int msb(int x) {return x?31-__builtin_clz(x):-1;}inline constexpr int64 ceil_div(const int64 a,const int64 b) {return (a+(b-1))/b;}// return ceil(a/b)void YN(bool flg) {cout << (flg ? "YES" : "NO") << endl;}void Yn(bool flg) {cout << (flg ? "Yes" : "No") << endl;}void yn(bool flg) {cout << (flg ? "yes" : "no") << endl;}/** @title Graph* @docs md/graph/Graph.md*/template<class T> class Graph{private:const size_t N,H,W;public:vector<vector<pair<size_t,T>>> edges;Graph(const size_t N):H(-1),W(-1),N(N), edges(N) {}Graph(const size_t H, const size_t W):H(H),W(W),N(H*W), edges(H*W) {}inline void make_edge(size_t from, size_t to, T w) {edges[from].emplace_back(to,w);}//{from_y,from_x} -> {to_y,to_x}inline void make_edge(pair<size_t,size_t> from, pair<size_t,size_t> to, T w) {make_edge(from.first*W+from.second,to.first*W+to.second,w);}inline void make_bidirectional_edge(size_t from, size_t to, T w) {make_edge(from,to,w);make_edge(to,from,w);}inline void make_bidirectional_edge(pair<size_t,size_t> from, pair<size_t,size_t> to, T w) {make_edge(from.first*W+from.second,to.first*W+to.second,w);make_edge(to.first*W+to.second,from.first*W+from.second,w);}inline size_t size(){return N;}inline size_t idx(pair<size_t,size_t> yx){return yx.first*W+yx.second;}};/** @title Tree - 木* @docs md/graph/Tree.md*/template<class Operator> class TreeBuilder;template<class Operator> class Tree {private:using TypeEdge = typename Operator::TypeEdge;size_t num;size_t ord;Graph<TypeEdge>& g;friend TreeBuilder<Operator>;Tree(Graph<TypeEdge>& graph):g(graph),num(graph.size()),depth(graph.size(),-1),order(graph.size()),edge_dist(graph.size()){}//for make_depthvoid dfs(int curr, int prev){for(const auto& e:g.edges[curr]){const int& next = e.first;if(next==prev) continue;depth[next] = depth[curr] + 1;edge_dist[next] = Operator::func_edge_merge(edge_dist[curr],e.second);dfs(next,curr);order[ord++] = next;}}//for make_eulertourvoid dfs(int from){eulertour.push_back(from);for(auto& e:child[from]){int to = e.first;dfs(to);eulertour.push_back(from);}}void make_root(const int root) {depth[root] = 0;edge_dist[root] = Operator::unit_edge;ord = 0;dfs(root,-1);order[ord++] = root;reverse_copy(order.begin(),order.end(),back_inserter(reorder));}void make_root() {ord = 0;for(int i=0;i<num;++i) {if(depth[i]!=-1) continue;depth[i] = 0;edge_dist[i] = Operator::unit_edge;dfs(i,-1);order[ord++] = i;}reverse_copy(order.begin(),order.end(),back_inserter(reorder));}void make_child(const int root = 0) {child.resize(num);for (size_t i = 0; i < num; ++i) for (auto& e : g.edges[i]) if (depth[i] < depth[e.first]) child[i].push_back(e);}void make_subtree_size() {subtree_size.resize(num,1);for (size_t i:order) for (auto e : child[i]) subtree_size[i] += subtree_size[e.first];}void make_parent() {parent.resize(num,make_pair(num,Operator::unit_edge));for (size_t i = 0; i < num; ++i) for (auto& e : g.edges[i]) if (depth[i] > depth[e.first]) parent[i] = e;}void make_ancestor() {ancestor.resize(num);for (size_t i = 0; i < num; ++i) ancestor[i][0] = (parent[i].first!=num?parent[i]:make_pair(i,Operator::unit_lca_edge));for (size_t j = 1; j < Operator::bit; ++j) {for (size_t i = 0; i < num; ++i) {size_t k = ancestor[i][j - 1].first;ancestor[i][j] = Operator::func_lca_edge_merge(ancestor[k][j - 1],ancestor[i][j - 1]);}}}pair<size_t,TypeEdge> lca_impl(size_t l, size_t r) {if (depth[l] < depth[r]) swap(l, r);int diff = depth[l] - depth[r];auto ancl = make_pair(l,Operator::unit_lca_edge);auto ancr = make_pair(r,Operator::unit_lca_edge);for (int j = 0; j < Operator::bit; ++j) {if (diff & (1 << j)) ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][j],ancl);}if(ancl.first==ancr.first) return ancl;for (int j = Operator::bit - 1; 0 <= j; --j) {if(ancestor[ancl.first][j].first!=ancestor[ancr.first][j].first) {ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][j],ancl);ancr = Operator::func_lca_edge_merge(ancestor[ancr.first][j],ancr);}}ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][0],ancl);ancr = Operator::func_lca_edge_merge(ancestor[ancr.first][0],ancr);return Operator::func_lca_edge_merge(ancl,ancr);}pair<TypeEdge,vector<size_t>> diameter_impl() {Tree tree = Tree::builder(g).build();size_t root = 0;{tree.make_root(0);}root = max_element(tree.edge_dist.begin(),tree.edge_dist.end()) - tree.edge_dist.begin();{tree.make_root(root);}size_t leaf = max_element(tree.edge_dist.begin(),tree.edge_dist.end()) - tree.edge_dist.begin();TypeEdge sz = tree.edge_dist[leaf];vector<size_t> st;{tree.make_parent();while(leaf != root) {st.push_back(leaf);leaf = tree.parent[leaf].first;}st.push_back(root);}return make_pair(sz,st);}template<class TypeReroot> vector<TypeReroot> rerooting_impl(vector<TypeReroot> rerootdp,vector<TypeReroot> rerootparent) {for(size_t pa:order) for(auto& e:child[pa]) rerootdp[pa] = Operator::func_reroot_dp(rerootdp[pa],rerootdp[e.first]);for(size_t pa:reorder) {if(depth[pa]) rerootdp[pa] = Operator::func_reroot_dp(rerootdp[pa],rerootparent[pa]);size_t m = child[pa].size();for(int j = 0; j < m && depth[pa]; ++j){size_t ch = child[pa][j].first;rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],rerootparent[pa]);}if(m <= 1) continue;vector<TypeReroot> l(m),r(m);for(int j = 0; j < m; ++j) {size_t ch = child[pa][j].first;l[j] = rerootdp[ch];r[j] = rerootdp[ch];}for(int j = 1; j+1 < m; ++j) l[j] = Operator::func_reroot_merge(l[j],l[j-1]);for(int j = m-2; 0 <=j; --j) r[j] = Operator::func_reroot_merge(r[j],r[j+1]);size_t chl = child[pa].front().first;size_t chr = child[pa].back().first;rerootparent[chl] = Operator::func_reroot_dp(rerootparent[chl],r[1]);rerootparent[chr] = Operator::func_reroot_dp(rerootparent[chr],l[m-2]);for(int j = 1; j+1 < m; ++j) {size_t ch = child[pa][j].first;rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],l[j-1]);rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],r[j+1]);}}return rerootdp;}void make_eulertour() {dfs(reorder.front());eulertour_range.resize(num);for(int i = 0; i < eulertour.size(); ++i) eulertour_range[eulertour[i]].second = i+1;for(int i = eulertour.size()-1; 0 <= i; --i) eulertour_range[eulertour[i]].first = i;}void make_heavy_light_decomposition(){head.resize(num);hld.resize(num);iota(head.begin(),head.end(),0);for(size_t& pa:reorder) {pair<size_t,size_t> maxi = {0,num};for(auto& p:child[pa]) maxi = max(maxi,{subtree_size[p.first],p.first});if(maxi.first) head[maxi.second] = head[pa];}stack<size_t> st_head,st_sub;size_t cnt = 0;//根に近い方から探索for(size_t& root:reorder){if(depth[root]) continue;//根をpushst_head.push(root);while(st_head.size()){size_t h = st_head.top();st_head.pop();//部分木の根をpushst_sub.push(h);while (st_sub.size()){size_t pa = st_sub.top();st_sub.pop();//部分木をカウントしていくhld[pa] = cnt++;//子を探索for(auto& p:child[pa]) {//子のheadが親と同じなら、そのまま進むif(head[p.first]==head[pa]) st_sub.push(p.first);//そうじゃない場合は、そこから新しく部分木としてみなすelse st_head.push(p.first);}}}}}//type 0: vertex, 1: edgevector<pair<size_t,size_t>> path_impl(size_t u,size_t v,int type = 0) {vector<pair<size_t,size_t>> path;while(1){if(hld[u]>hld[v]) swap(u,v);if(head[u]!=head[v]) {path.push_back({hld[head[v]],hld[v]});v=parent[head[v]].first;}else {path.push_back({hld[u],hld[v]});break;}}reverse(path.begin(),path.end());if(type) path.front().first++;return path;}pair<vector<pair<size_t,size_t>>,vector<pair<size_t,size_t>>> ordered_path_impl(size_t u,size_t v,int type = 0) {vector<pair<size_t,size_t>> path_lca_to_u;vector<pair<size_t,size_t>> path_lca_to_v;while(1){if(head[u] == head[v]) {if(depth[u] < depth[v]) path_lca_to_v.emplace_back(hld[u]+type,hld[v]);else path_lca_to_u.emplace_back(hld[v]+type,hld[u]);break;}else if(hld[u] < hld[v]) {path_lca_to_v.emplace_back(hld[head[v]],hld[v]);v = parent[head[v]].first;}else if(hld[u] > hld[v]) {path_lca_to_u.emplace_back(hld[head[u]],hld[u]);u = parent[head[u]].first;}}reverse(path_lca_to_v.begin(),path_lca_to_v.end());return {path_lca_to_u,path_lca_to_v};}size_t lca_idx_impl(size_t u,size_t v){while(1){if(hld[u]>hld[v]) swap(u,v);if(head[u]==head[v]) return u;v=parent[head[v]].first;}}vector<size_t> head;public:vector<size_t> depth;vector<size_t> order;vector<size_t> reorder;vector<size_t> subtree_size;vector<pair<size_t,TypeEdge>> parent;vector<vector<pair<size_t,TypeEdge>>> child;vector<TypeEdge> edge_dist;vector<array<pair<size_t,TypeEdge>,Operator::bit>> ancestor;vector<size_t> eulertour;vector<pair<size_t,size_t>> eulertour_range;vector<size_t> hld;/*** O(N) builder*/static TreeBuilder<Operator> builder(Graph<TypeEdge>& graph) { return TreeBuilder<Operator>(graph);}/*** O(logN) after make_ancestor* return {lca,lca_dist} l and r must be connected*/pair<size_t,TypeEdge> lca(size_t l, size_t r) {return lca_impl(l,r);}/*** O(N) anytime* return {diameter size,diameter set}*/pair<TypeEdge,vector<size_t>> diameter(void){return diameter_impl();}/*** O(N) after make_child*/template<class TypeReroot> vector<TypeReroot> rerooting(const vector<TypeReroot>& rerootdp,const vector<TypeReroot>& rerootparent) {returnrerooting_impl(rerootdp,rerootparent);}/*** O(logN)*/vector<pair<size_t,size_t>> vertex_set_on_path(size_t u, size_t v) {return path_impl(u,v,0);}/**/*** O(logN)*/vector<pair<size_t,size_t>> edge_set_on_path(size_t u, size_t v) {return path_impl(u,v,1);}/*** O(logN)* {lca to u path,lca to v path}*/pair<vector<pair<size_t,size_t>>,vector<pair<size_t,size_t>>> vertex_ordered_set_on_path(size_t u, size_t v) {return ordered_path_impl(u,v,0);}/*** O(logN)* {lca to u path,lca to v path}*/pair<vector<pair<size_t,size_t>>,vector<pair<size_t,size_t>>> edge_ordered_set_on_path(size_t u, size_t v) {return ordered_path_impl(u,v,1);}/*** O(logN) ancestorのlcaより定数倍軽め。idxだけ*/size_t lca_idx(size_t u, size_t v) {return lca_idx_impl(u,v);}};template<class Operator> class TreeBuilder {bool is_root_made =false;bool is_child_made =false;bool is_parent_made=false;bool is_subtree_size_made=false;public:using TypeEdge = typename Operator::TypeEdge;TreeBuilder(Graph<TypeEdge>& g):tree(g){}TreeBuilder& root(const int rt) { is_root_made=true; tree.make_root(rt); return *this;}TreeBuilder& root() { is_root_made=true; tree.make_root(); return *this;}TreeBuilder& child() { assert(is_root_made); is_child_made=true; tree.make_child(); return *this;}TreeBuilder& parent() { assert(is_root_made); is_parent_made=true; tree.make_parent(); return *this;}TreeBuilder& subtree_size() { assert(is_child_made); is_subtree_size_made=true; tree.make_subtree_size(); return *this;}TreeBuilder& ancestor() { assert(is_parent_made); tree.make_ancestor(); return *this;}TreeBuilder& eulertour() { assert(is_child_made); tree.make_eulertour(); return *this;}TreeBuilder& heavy_light_decomposition() { assert(is_subtree_size_made); assert(is_parent_made); tree.make_heavy_light_decomposition(); return*this;}Tree<Operator>&& build() {return move(tree);}private:Tree<Operator> tree;};template<class T> struct TreeOperator{using TypeEdge = T;inline static constexpr size_t bit = 20;inline static constexpr TypeEdge unit_edge = 0;inline static constexpr TypeEdge unit_lca_edge = 0;inline static constexpr TypeEdge func_edge_merge(const TypeEdge& parent,const TypeEdge& w){return parent+w;}inline static constexpr pair<size_t,TypeEdge> func_lca_edge_merge(const pair<size_t,TypeEdge>& l,const pair<size_t,TypeEdge>& r){return make_pair(l.first,l.second+r.second);}template<class TypeReroot> inline static constexpr TypeReroot func_reroot_dp(const TypeReroot& l,const TypeReroot& r) {return {l.first+r.first+r.second,l.second+r.second};}template<class TypeReroot> inline static constexpr TypeReroot func_reroot_merge(const TypeReroot& l,const TypeReroot& r) {return {l.first+r.first,l.second+r.second};}};//auto tree = Tree<TreeOperator<int>>::builder(g).build();/*** @url* @est*/int main() {cin.tie(0);ios::sync_with_stdio(false);int N,K; cin >> N >> K;Graph<int> g(N);for(int i=0;i<N-1;++i) {int a,b,c; cin >> a >> b >> c;a--,b--;g.make_bidirectional_edge(a,b,c);}auto tree = Tree<TreeOperator<int>>::builder(g).root(0).parent().child().build();vector<int64> cnt(N,0);int sum = 0;vector<int> cost,value;for(int pa:tree.order) {if(tree.child[pa].empty()) {cnt[pa]++;sum += tree.edge_dist[pa];}for(auto p:tree.child[pa]) {int ch = p.first;cnt[pa] += cnt[ch];}auto w = tree.parent[pa].second;if(tree.depth[pa]) {value.push_back(cnt[pa]*w);cost.push_back(w);}}vector<int> dp(K+1,0),tp(K+1,0);for(int i=0;i<N-1;++i) {for(int j=0;j<=K;++j) tp[j]=0;for(int j=0;j<=K;++j) {if(j+cost[i]<=K)chmax(tp[j+cost[i]],dp[j]+value[i]);chmax(tp[j],dp[j]);}swap(tp,dp);}int ans = sum + (*max_element(ALL(dp)));cout << ans << endl;return 0;}