結果

問題 No.1489 Repeat Cumulative Sum
ユーザー Plan8
提出日時 2021-04-23 22:53:22
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 3,890 bytes
コンパイル時間 2,900 ms
コンパイル使用メモリ 194,188 KB
最終ジャッジ日時 2025-01-21 00:18:42
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 24 WA * 3
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<long long> VL;
typedef vector<vector<long long>> VVL;
typedef pair<int,int> Pair;
typedef tuple<int,int,int> tpl;
#define ALL(a) (a).begin(),(a).end()
#define SORT(c) sort((c).begin(),(c).end())
#define REVERSE(c) reverse((c).begin(),(c).end())
#define EXIST(m,v) (m).find((v)) != (m).end()
#define LB(a,x) lower_bound((a).begin(), (a).end(), x) - (a).begin()
#define UB(a,x) upper_bound((a).begin(), (a).end(), x) - (a).begin()
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define REP(i,n) FOR(i,0,n)
#define RFOR(i,a,b) for(int i=(a)-1;i>=(b);--i)
#define RREP(i,n) RFOR(i,n,0)
#define en "\n"
constexpr double EPS = 1e-9;
constexpr double PI = 3.1415926535897932;
constexpr int INF = 2147483647;
constexpr long long LINF = 1LL<<60;
constexpr long long MOD = 1000000007; // 998244353;
template<class T> inline bool chmax(T& a, T b){if(a<b){a=b;return true;}return false;}
template<class T> inline bool chmin(T& a, T b){if(a>b){a=b;return true;}return false;}
struct modint {
long long x;
modint(long long x=0):x((x%MOD+MOD)%MOD){}
long long val(){
return x;
}
modint operator-() const { return modint(-x);}
modint& operator+=(const modint a) {
if ((x += a.x) >= MOD) x -= MOD;
return *this;
}
modint& operator-=(const modint a) {
if ((x += MOD-a.x) >= MOD) x -= MOD;
return *this;
}
modint& operator*=(const modint a) {
(x *= a.x) %= MOD;
return *this;
}
modint operator+(const modint a) const {
modint res(*this);
return res+=a;
}
modint operator-(const modint a) const {
modint res(*this);
return res-=a;
}
modint operator*(const modint a) const {
modint res(*this);
return res*=a;
}
modint pow(long long t) const {
if (!t) return 1;
modint a = pow(t>>1);
a *= a;
if (t&1) a *= *this;
return a;
}
// must be gcd(x,MOD)==1
modint inv() const {
// a^{-1} = 1/a MOD p (Euclid)
long long b = MOD, u = 1, v = 0, z = x;
while(b){
long long t = z / b;
z -= t * b; swap(z, b);
u -= t * v; swap(u, v);
}
u %= MOD;
if (u < 0) u += MOD;
return modint(u);
}
//modint inv() const {
// return pow(MOD-2);
//}
modint& operator/=(const modint a) {
return (*this) *= a.inv();
}
modint operator/(const modint a) const {
modint res(*this);
return res/=a;
}
};
using mint = modint;
struct Factorial{
vector<mint> fact, ifact;
Factorial(int N): fact(N+1), ifact(N+1) {
assert(N < MOD);
fact[0] = 1;
for(int i=0; i<N; i++) fact[i+1] = fact[i] * (i+1);
ifact[N] = fact[N].inv();
for(int i=N; i>0; i--) ifact[i-1] = ifact[i] * i;
}
mint C(int n, int k){
if (k < 0 || k > n) return 0;
return fact[n]*ifact[k]*ifact[n-k];
}
mint P(int n, int k){
if (k < 0 || k > n) return 0;
return fact[n]*ifact[n-k];
}
mint inv(int n){
assert(n>0);
return fact[n-1]*ifact[n];
}
};
mint f(ll n, ll r, mint nCr){
mint ret = nCr;
ret *= (n+1-r)%MOD;
ret /= n+1;
return ret;
}
mint g(ll n, ll r){
mint bunbo(1),bunsi(1);
ll mn = min(r,n-r);
REP(i,mn){
bunbo *= i+1;
bunsi *= n-i;
}
return bunsi/bunbo;
}
void Main(){
ll N,M; cin >> N >> M;
mint nCr=g(N+M-1,M-1),ans;
REP(i,N-1){
ll a; cin >> a;
nCr = f(N+M-2-i,M-1,nCr);
ans += (nCr-1)*a + a;
}
cout << ans.x << en;
return;
}
int main(void){
cin.tie(0);cout.tie(0);ios_base::sync_with_stdio(0);cout<<fixed<<setprecision(15);
int t=1; //cin>>t;
while(t--) Main();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0