結果
問題 | No.1492 01文字列と転倒 |
ユーザー | 👑 tute7627 |
提出日時 | 2021-04-30 21:28:54 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 230 ms / 4,000 ms |
コード長 | 20,131 bytes |
コンパイル時間 | 2,292 ms |
コンパイル使用メモリ | 206,132 KB |
最終ジャッジ日時 | 2025-01-21 02:34:17 |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 22 |
ソースコード
//#define _GLIBCXX_DEBUG#include<bits/stdc++.h>using namespace std;#define endl '\n'#define lfs cout<<fixed<<setprecision(10)#define ALL(a) (a).begin(),(a).end()#define ALLR(a) (a).rbegin(),(a).rend()#define spa << " " <<#define fi first#define se second#define MP make_pair#define MT make_tuple#define PB push_back#define EB emplace_back#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)using ll = long long;using ld = long double;const ll MOD1 = 1e9+7;const ll MOD9 = 998244353;const ll INF = 1e18;using P = pair<ll, ll>;template<typename T> using PQ = priority_queue<T>;template<typename T> using QP = priority_queue<T,vector<T>,greater<T>>;template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;}void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;}void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;}template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;}template<typename T1,typename T2,typename T3>void anss(T1 x,T2 y,T3 z){ans(x!=y,x,z);};template<typename T>void debug(const T &v,ll h,ll w,string sv=" "){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout<<sv<<v[i][j];cout<<endl;}};template<typename T>void debug(const T &v,ll n,string sv=" "){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout<<sv<<v[i];cout<<endl;};template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}ll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << " " << p.second;}template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << " ";cout<<"|"; return os;}template<typename T>void rearrange(vector<int>&ord, vector<T>&v){auto tmp = v;for(int i=0;i<tmp.size();i++)v[i] = tmp[ord[i]];}template<typename Head, typename... Tail>void rearrange(vector<int>&ord,Head&& head, Tail&&... tail){rearrange(ord, head);rearrange(ord, tail...);}template<typename T> vector<int> ascend(const vector<T>&v){vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);sort(ord.begin(),ord.end(),[&](int i,int j){return v[i]<v[j];});return ord;}template<typename T> vector<int> descend(const vector<T>&v){vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);sort(ord.begin(),ord.end(),[&](int i,int j){return v[i]>v[j];});return ord;}ll FLOOR(ll n,ll div){return n>=0?n/div:(n-div+1)/div;}ll CEIL(ll n,ll div){return n>=0?(n+div-1)/div:n/div;}template<typename T>T min(const vector<T>&v){return *min_element(v.begin(),v.end());}template<typename T>T max(const vector<T>&v){return *max_element(v.begin(),v.end());}template<typename T>T reverse(const T &v){return T(v.rbegin(),v.rend());};//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());int popcount(ll x){return __builtin_popcountll(x);};int poplow(ll x){return __builtin_ctzll(x);};int pophigh(ll x){return 63 - __builtin_clzll(x);};template<typename T>T poll(queue<T> &q){auto ret=q.front();q.pop();return ret;};template<typename T>T poll(priority_queue<T> &q){auto ret=q.top();q.pop();return ret;};template<typename T>T poll(QP<T> &q){auto ret=q.top();q.pop();return ret;};template<typename T>T poll(stack<T> &s){auto ret=s.top();s.pop();return ret;};template< typename T = int >struct edge {int to;T cost;int id;edge():id(-1){};edge(int to, T cost = 1, int id = -1):to(to), cost(cost), id(id){}operator int() const { return to; }};template<typename T>using Graph = vector<vector<edge<T>>>;template<typename T>Graph<T> readGraph(int n,int m,int indexed=1,bool directed=false,bool weighted=false){Graph<T> ret(n);for(int es = 0; es < m; es++){int u,v,w=1;cin>>u>>v;u-=indexed,v-=indexed;if(weighted)cin>>w;ret[u].emplace_back(v,w,es);if(!directed)ret[v].emplace_back(u,w,es);}return ret;}template<typename T>Graph<T> readParent(int n,int indexed=1,bool directed=true){Graph<T>ret(n);for(int i=1;i<n;i++){int p;cin>>p;p-=indexed;ret[p].emplace_back(i);if(!directed)ret[i].emplace_back(p);}return ret;}namespace atcoder {namespace internal {#ifndef _MSC_VERtemplate <class T>using is_signed_int128 =typename std::conditional<std::is_same<T, __int128_t>::value ||std::is_same<T, __int128>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int128 =typename std::conditional<std::is_same<T, __uint128_t>::value ||std::is_same<T, unsigned __int128>::value,std::true_type,std::false_type>::type;template <class T>using make_unsigned_int128 =typename std::conditional<std::is_same<T, __int128_t>::value,__uint128_t,unsigned __int128>;template <class T>using is_integral = typename std::conditional<std::is_integral<T>::value ||is_signed_int128<T>::value ||is_unsigned_int128<T>::value,std::true_type,std::false_type>::type;template <class T>using is_signed_int = typename std::conditional<(is_integral<T>::value &&std::is_signed<T>::value) ||is_signed_int128<T>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<(is_integral<T>::value &&std::is_unsigned<T>::value) ||is_unsigned_int128<T>::value,std::true_type,std::false_type>::type;template <class T>using to_unsigned = typename std::conditional<is_signed_int128<T>::value,make_unsigned_int128<T>,typename std::conditional<std::is_signed<T>::value,std::make_unsigned<T>,std::common_type<T>>::type>::type;#elsetemplate <class T> using is_integral = typename std::is_integral<T>;template <class T>using is_signed_int =typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<is_integral<T>::value &&std::is_unsigned<T>::value,std::true_type,std::false_type>::type;template <class T>using to_unsigned = typename std::conditional<is_signed_int<T>::value,std::make_unsigned<T>,std::common_type<T>>::type;#endiftemplate <class T>using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;template <class T>using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;template <class T> using to_unsigned_t = typename to_unsigned<T>::type;} // namespace internal} // namespace atcodernamespace atcoder {namespace internal {// @param m `1 <= m`// @return x mod mconstexpr long long safe_mod(long long x, long long m) {x %= m;if (x < 0) x += m;return x;}// Fast moduler by barrett reduction// Reference: https://en.wikipedia.org/wiki/Barrett_reduction// NOTE: reconsider after Ice Lakestruct barrett {unsigned int _m;unsigned long long im;// @param m `1 <= m`barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}// @return munsigned int umod() const { return _m; }// @param a `0 <= a < m`// @param b `0 <= b < m`// @return `a * b % m`unsigned int mul(unsigned int a, unsigned int b) const {// [1] m = 1// a = b = im = 0, so okay// [2] m >= 2// im = ceil(2^64 / m)// -> im * m = 2^64 + r (0 <= r < m)// let z = a*b = c*m + d (0 <= c, d < m)// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2// ((ab * im) >> 64) == c or c + 1unsigned long long z = a;z *= b;#ifdef _MSC_VERunsigned long long x;_umul128(z, im, &x);#elseunsigned long long x =(unsigned long long)(((unsigned __int128)(z)*im) >> 64);#endifunsigned int v = (unsigned int)(z - x * _m);if (_m <= v) v += _m;return v;}};// @param n `0 <= n`// @param m `1 <= m`// @return `(x ** n) % m`constexpr long long pow_mod_constexpr(long long x, long long n, int m) {if (m == 1) return 0;unsigned int _m = (unsigned int)(m);unsigned long long r = 1;unsigned long long y = safe_mod(x, m);while (n) {if (n & 1) r = (r * y) % _m;y = (y * y) % _m;n >>= 1;}return r;}// Reference:// M. Forisek and J. Jancina,// Fast Primality Testing for Integers That Fit into a Machine Word// @param n `0 <= n`constexpr bool is_prime_constexpr(int n) {if (n <= 1) return false;if (n == 2 || n == 7 || n == 61) return true;if (n % 2 == 0) return false;long long d = n - 1;while (d % 2 == 0) d /= 2;for (long long a : {2, 7, 61}) {long long t = d;long long y = pow_mod_constexpr(a, t, n);while (t != n - 1 && y != 1 && y != n - 1) {y = y * y % n;t <<= 1;}if (y != n - 1 && t % 2 == 0) {return false;}}return true;}template <int n> constexpr bool is_prime = is_prime_constexpr(n);// @param b `1 <= b`// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/gconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {a = safe_mod(a, b);if (a == 0) return {b, 0};// Contracts:// [1] s - m0 * a = 0 (mod b)// [2] t - m1 * a = 0 (mod b)// [3] s * |m1| + t * |m0| <= blong long s = b, t = a;long long m0 = 0, m1 = 1;while (t) {long long u = s / t;s -= t * u;m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b// [3]:// (s - t * u) * |m1| + t * |m0 - m1 * u|// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)// = s * |m1| + t * |m0| <= bauto tmp = s;s = t;t = tmp;tmp = m0;m0 = m1;m1 = tmp;}// by [3]: |m0| <= b/g// by g != b: |m0| < b/gif (m0 < 0) m0 += b / s;return {s, m0};}// Compile time primitive root// @param m must be prime// @return primitive root (and minimum in now)constexpr int primitive_root_constexpr(int m) {if (m == 2) return 1;if (m == 167772161) return 3;if (m == 469762049) return 3;if (m == 754974721) return 11;if (m == 998244353) return 3;int divs[20] = {};divs[0] = 2;int cnt = 1;int x = (m - 1) / 2;while (x % 2 == 0) x /= 2;for (int i = 3; (long long)(i)*i <= x; i += 2) {if (x % i == 0) {divs[cnt++] = i;while (x % i == 0) {x /= i;}}}if (x > 1) {divs[cnt++] = x;}for (int g = 2;; g++) {bool ok = true;for (int i = 0; i < cnt; i++) {if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {ok = false;break;}}if (ok) return g;}}template <int m> constexpr int primitive_root = primitive_root_constexpr(m);} // namespace internal} // namespace atcodernamespace atcoder {namespace internal {struct modint_base {};struct static_modint_base : modint_base {};template <class T> using is_modint = std::is_base_of<modint_base, T>;template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;} // namespace internaltemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>struct static_modint : internal::static_modint_base {using mint = static_modint;public:static constexpr int mod() { return m; }static mint raw(int v) {mint x;x._v = v;return x;}static_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T>* = nullptr>static_modint(T v) {long long x = (long long)(v % (long long)(umod()));if (x < 0) x += umod();_v = (unsigned int)(x);}template <class T, internal::is_unsigned_int_t<T>* = nullptr>static_modint(T v) {_v = (unsigned int)(v % umod());}static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }unsigned int val() const { return _v; }mint& operator++() {_v++;if (_v == umod()) _v = 0;return *this;}mint& operator--() {if (_v == 0) _v = umod();_v--;return *this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint& operator+=(const mint& rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator-=(const mint& rhs) {_v -= rhs._v;if (_v >= umod()) _v += umod();return *this;}mint& operator*=(const mint& rhs) {unsigned long long z = _v;z *= rhs._v;_v = (unsigned int)(z % umod());return *this;}mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }mint operator+() const { return *this; }mint operator-() const { return mint() - *this; }mint pow(long long n) const {assert(0 <= n);mint x = *this, r = 1;while (n) {if (n & 1) r *= x;x *= x;n >>= 1;}return r;}mint inv() const {if (prime) {assert(_v);return pow(umod() - 2);} else {auto eg = internal::inv_gcd(_v, m);assert(eg.first == 1);return eg.second;}}friend mint operator+(const mint& lhs, const mint& rhs) {return mint(lhs) += rhs;}friend mint operator-(const mint& lhs, const mint& rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint& lhs, const mint& rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint& lhs, const mint& rhs) {return mint(lhs) /= rhs;}friend bool operator==(const mint& lhs, const mint& rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint& lhs, const mint& rhs) {return lhs._v != rhs._v;}private:unsigned int _v;static constexpr unsigned int umod() { return m; }static constexpr bool prime = internal::is_prime<m>;};template <int id> struct dynamic_modint : internal::modint_base {using mint = dynamic_modint;public:static int mod() { return (int)(bt.umod()); }static void set_mod(int m) {assert(1 <= m);bt = internal::barrett(m);}static mint raw(int v) {mint x;x._v = v;return x;}dynamic_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T>* = nullptr>dynamic_modint(T v) {long long x = (long long)(v % (long long)(mod()));if (x < 0) x += mod();_v = (unsigned int)(x);}template <class T, internal::is_unsigned_int_t<T>* = nullptr>dynamic_modint(T v) {_v = (unsigned int)(v % mod());}dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }unsigned int val() const { return _v; }mint& operator++() {_v++;if (_v == umod()) _v = 0;return *this;}mint& operator--() {if (_v == 0) _v = umod();_v--;return *this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint& operator+=(const mint& rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator-=(const mint& rhs) {_v += mod() - rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator*=(const mint& rhs) {_v = bt.mul(_v, rhs._v);return *this;}mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }mint operator+() const { return *this; }mint operator-() const { return mint() - *this; }mint pow(long long n) const {assert(0 <= n);mint x = *this, r = 1;while (n) {if (n & 1) r *= x;x *= x;n >>= 1;}return r;}mint inv() const {auto eg = internal::inv_gcd(_v, mod());assert(eg.first == 1);return eg.second;}friend mint operator+(const mint& lhs, const mint& rhs) {return mint(lhs) += rhs;}friend mint operator-(const mint& lhs, const mint& rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint& lhs, const mint& rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint& lhs, const mint& rhs) {return mint(lhs) /= rhs;}friend bool operator==(const mint& lhs, const mint& rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint& lhs, const mint& rhs) {return lhs._v != rhs._v;}private:unsigned int _v;static internal::barrett bt;static unsigned int umod() { return bt.umod(); }};template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;using modint998244353 = static_modint<998244353>;using modint1000000007 = static_modint<1000000007>;using modint = dynamic_modint<-1>;namespace internal {template <class T>using is_static_modint = std::is_base_of<internal::static_modint_base, T>;template <class T>using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;template <class> struct is_dynamic_modint : public std::false_type {};template <int id>struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};template <class T>using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;} // namespace internal} // namespace atcoderint main(){cin.tie(nullptr);ios_base::sync_with_stdio(false);ll res=0,buf=0;bool judge = true;using namespace atcoder;ll n,m;cin>>n>>m;modint::set_mod(m);ll sz=n*(n-1)/2+3;auto dp=make_v(n+1,n+1,sz+1,modint(0));dp[0][0][0]=1;rep(i,0,n+1)rep(j,0,i+1)rep(o,0,sz+1){if(i<n&&o+j<=sz)dp[i+1][j][o+j]+=dp[i][j][o];if(j<n)dp[i][j+1][o]+=dp[i][j][o];}rep(i,0,n*n+1){cout<<dp[n][n][min(sz,i)].val()<<endl;}return 0;}